

1 Distributed Control Systems / Programming Manual

Programming

Manual

Distributed Control Systems

• DM50 Series Industrial RTU Router

• DM100, RTU100 and RTU300 Series RTU (Remote Terminal

Unit)

• DM500 Series Rack RTU

DOCUMENT NAME

DATE

VERSION

MIKRODEV_SM_RTU_PM_EN

v1.3

01 / 2026

Telediagram 19.0.6

(Official Build)

2 Distributed Control Systems / Programming Manual

CONTENTS

Preface... 8

About Mikrodev ... 10

WARNING! .. 11

1 LOGIC GATE BLOCKS ... 12

1.1 EDGE GATE ... 12

1.2 NOT GATE ... 15

1.3 OR GATE ... 17

1.4 NOR GATE ... 19

1.5 NAND GATE ... 22

1.6 AND GATE ... 25

1.7 XOR GATE ... 28

1.8 HIGH GATE .. 31

1.9 LOW GATE ... 32

1.10 IMPULSE RELAY ... 33

1.11 SHIFT BLOCK ... 38

1.12 BİT MERGE BLOCK ... 42

1.13 CUSTOM GATE ... 46

2 INPUT-OUTPUT BLOCKS ... 49

2.1 DIGITAL INPUT BLOCK .. 49

2.2 DIGITAL OUTPUT BLOCK ... 51

2.3 ANALOG INPUT BLOCK .. 53

2.4 ANALOG OUTPUT BLOCK ... 55

2.5 RELAY OUTPUT BLOCK .. 57

2.6 RTD INPUT BLOCK .. 59

2.7 LOCKED DIGITAL INPUT BLOCK ... 62

2.8 LOCKED ANALOG INPUT BLOCK ... 67

2.9 LOCKED RTD INPUT BLOCK ... 72

2.10 LOCKED DIGITAL OUTPUT BLOCK .. 77

2.11 LOCKED ANALOG OUTPUT BLOCK .. 81

3 Distributed Control Systems / Programming Manual

2.12 LOCKED RELAY OUTPUT BLOCK ... 86

3 CALIBRATION BLOCKS ... 90

3.1 SLOPE CALIBRATOR ... 90

3.2 POINT CALIBRATOR .. 93

4 DELAY/PULSE TIMERS .. 96

4.1 ON DELAY ... 96

4.2 OFF DELAY .. 99

4.3 ON/OFF DELAY ... 102

4.4 RETENTIVE ON DELAY... 105

4.5 TIMER OUTPUT RELAY .. 108

4.6 SYMETRIC PULSE GENERATOR ... 111

4.7 REAL TIME PULSE GENERATOR .. 113

5 MATHEMATICAL OPERATION BLOCKS ... 116

5.1 WORD COMPARATOR .. 116

5.2 ANALOG COMPARATOR ... 120

5.3 LONG COMPARATOR ... 124

5.4 WORD MATH.. 128

5.5 ANALOG MATH ... 146

5.6 LONG MATH ... 159

6 COUNTER BLOCKS .. 177

6.1 UP/DOWN COUNTER 1 .. 177

6.2 UP/DOWN COUNTER 2 .. 180

6.3 RUN TIME .. 183

7 GSM BLOCKS ... 185

7.1 SMS RECEIVER .. 187

7.2 SMS SEND ... 191

7.3 INCOMING DTMF CALL .. 194

7.4 OUTGOING DTMF CALL ... 197

7.5 GSM SIGNAL QUALITY .. 200

8 DATA/EVENT RECORDING BLOCK ... 201

4 Distributed Control Systems / Programming Manual

8.1 LOGGER .. 201

9 REGISTER/VARIABLE BLOCKS .. 203

9.1 WORD REGISTER ... 203

9.2 ANALOG REGISTER .. 206

9.3 LONG REGISTER .. 209

9.4 BINARY REGISTERS .. 212

9.5 BINARY FLAG ... 215

9.6 WORD FLAG .. 217

9.7 ANALOG FLAG .. 219

9.8 LONG FLAG ... 221

10 MODBUS PROTOCOL BLOCKS ... 223

10.1 MODBUS RTU MASTER .. 223

10.2 MODBUS TCP MASTER .. 226

10.3 MODBUS TCP SLAVE ... 229

10.4 MODBUS RTU SLAVE .. 233

10.5 MODBUS GATEWAY BLOCK .. 236

10.6 MODBUS WORD READER ... 237

10.7 MODBUS FLOAT READER ... 240

10.8 MODBUS LONG READER .. 243

10.9 MODBUS WORD WRITER ... 246

10.10 MODBUS FLOAT WRITER ... 249

10.11 MODBUS LONG WRITER .. 252

10.12 MODBUS READ/WRITE TABLE .. 255

10.13 MODBUS STATUS BLOK .. 264

10.14 Example of 64-Bit Data Type Reading ... 267

11 IEC DNP3 PROTOCOL BLOCKS .. 271

11.1 IEC101 SLAVE ... 271

11.2 DNP3 SLAVE .. 275

11.3 IEC 60870-5-104 SLAVE ... 290

12 MQTT BLOCKS .. 325

5 Distributed Control Systems / Programming Manual

12.1 MQTT Config Block ... 325

12.2 MQTT Table ... 328

13 SNMP PROTOCOL BLOCKS .. 351

13.1 SNMP AGENT BLOCK... 351

13.2 SNMP Trap Block .. 353

14 COMMUNICATION BLOCKS ... 361

14.1 SERIAL PORT BLOCK .. 361

14.2 TCP SOCKET BLOCK ... 363

14.3 DNS BLOCK ... 369

15 TABLE BLOCKS ... 373

15.1 WORD TABLE ... 373

15.2 ANALOG TABLE .. 376

15.3 LONG TABLE .. 379

15.4 BIT TABLE ... 382

15.5 WORD TABLE OPERATION ... 385

15.6 ANALOG TABLE OPERATION .. 393

15.7 LONG TABLE OPERATİON .. 400

15.8 BIT TABLE OPERATİON ... 408

16 CONTROLLER BLOCKS ... 414

16.1 HYSTERESIS .. 414

16.2 PID CONTROLLER ... 418

16.3 ANALOG RAMP ... 423

16.4 ON/OFF CONTROLLER ... 426

16.5 CHANGE DETECTOR.. 432

17 SYSTEM BLOCKS ... 434

17.1 FIRST SCAN BIT ... 434

17.2 RESET COUNTER .. 435

17.3 SYSTEM RESET .. 436

18 HVAC BLOCKS .. 438

18.1 FLOATING MOTOR .. 438

6 Distributed Control Systems / Programming Manual

18.2 AGING MANAGER ... 441

18.3 AGING MEMBER ... 444

18.4 DEVNET MAIN .. 449

18.5 DEVNET REGISTER ... 453

19 MULTIPLEXER BLOCKS ... 455

19.1 ANALOG QUART MULTIPLEXER ... 455

19.2 WORD DUAL MULTIPLEXER .. 459

19.3 LONG DUAL MULTIPLEXER ... 461

19.4 ANALOG Dual Multiplexer .. 463

20 MOTION CONTROL BLOCKS .. 465

20.1 FAST COUNTER INPUT .. 465

20.2 PULSE WIDTH MODULATION (PWM) ... 467

20.3 PULSE TRAIN OUTPUT ... 470

20.4 AXIS DEFINITON .. 474

20.5 AXIS CONTROL .. 477

21 SERIAL COMMUNICATION BLOCKS .. 480

21.1 Rx Packet .. 480

21.2 Packet Parser ... 482

21.3 Tx Packet .. 486

21.4 Serial Gateway .. 489

22 STRING BLOCKS ... 492

22.1 STRING REFERANCE ... 492

22.2 STRING MANIPULATION .. 494

22.3 STRING OPERATION ... 498

23 CALENDER BLOCKS ... 500

23.1 WEEKLY TIMER .. 500

23.2 YEARLY TIMER ... 503

23.3 ASTRONOMICAL TIMER ... 505

23.4 SYSTEM SECONDS ... 508

23.5 SYSTEM MILISECONDS ... 509

7 Distributed Control Systems / Programming Manual

23.6 SYSTEM HHMM (HOUR-MINUTE) .. 510

23.7 SYSTEM DAY OF WEEK .. 511

23.8 SYSTEM DAY OF MONTH ... 512

23.9 SYSTEM DAY OF YEAR .. 513

23.10 SYSTEM MONTH ... 514

23.11 SYSTEM YEAR .. 515

23.12 NTP SYNCRONISE BLOCK .. 516

23.13 SAVE TIME .. 519

23.14 TIME PLAN PICKER ... 521

24 MACRO BLOCKS .. 525

24.1 MACRO ... 525

25 DALI BLOCKS ... 532

25.1 DALI Block .. 532

25.2 Dali Manager Block ... 536

25.3 Dali Manager Block 2 .. 541

8 Distributed Control Systems / Programming Manual

Preface

Mikrodev telemetry and automation systems are equipped with high electromagnetic compatibility,

powerful PLC features and multiple communication channels and protocols.

Thanks to Telediagram (Mikrodev RTU Programming Editor), open and expandable automation and

telemetry applications can be developed easily and quickly.

Mikrodev DM50, DM100, DM500 and RTU300 series DCS products have different types of I/O cards

and communication port options, and I/O numbers can be expanded by adding expansion modules

to all products.

ELECTRICAL POWER AUTOMATION

Mikrodev Distributed Control Systems devices, Smart Electrical Devices (protection relays,

reclosers, energy and quality analyzers etc.) in the electrical sector can be read and controlled with

the industry standard protocols IEC 60870, DNP3, Modbus TCP, MQTT and ICCP TASE.2. Thay can

also communicate with SCADA or control center software via IEC 60870, DNP3 and MODBUS TCP

protocols. Mikrodev RTU products are preferred in electrical energy applications with their easy,

flexible and fast programming capabilities and I/O expansion possibilities.

9 Distributed Control Systems / Programming Manual

WATER AND WASTE SECTOR

Mikrodev RTU products are used in the remote monitoring and control of pumping stations,

storages, wells, pipelines, meters and flow meters, valves, dosing and water quality measuring

stations. According to the Master/Slave operating principle, you can create simultaneous and

multiple communication channels between stations such as wells, warehouses, lift-pump centers.

At this point, the entire water network is managed in a distributed manner. Even when the central

SCADA service is out of service, stations on the field continue to work by communicating with each

other. Once SCADA is active again, past events and data can be transmitted to the system without

loss of data with time-tagged messages of IEC104 and DNP3.

In the programming of DCS series devices, Function Block Diagram - FBD language which is defined

in IEC 61131-3 standard is used. Thanks to the programming with the FBD language, the project

can be developed easily and quickly with the drag and drop logic.

In this document, the function block library elements used in programming Mikrodev DM50 series

industrial RTU router, DM500 series rack RTU, DM100 and RTU300 series RTUs with FBD are

explained.

Please follow our website www.mikrodev.com for the up to date version of the document.

http://www.mikrodev.com/

10 Distributed Control Systems / Programming Manual

About Mikrodev

Since 2006, MIKRODEV has been developing and manufacturing industrial control and

communication products. MIKRODEV serves the system integrators in the public and private

sector, OEM and end users.

Our products are manufactured complying with the quality standards required by the

industrial automation industry and the quality of our products are proved on the field for many

years

MIKRODEV is one of the few companies in the world that has its own designed IEC 61131-3

compliant library for its programmable logic control devices. In addition, the open, flexible,

programmable SCADA solution developed by MIKRODEV is also available to customers.

MIKRODEV products' performance and wide range of applications make them possible for

customers to achieve faster, simplified and cost-effective results.

11 Distributed Control Systems / Programming Manual

WARNING!

✓ Use the programming editor only for Mikrodev Certifed devices

✓ When you change your physical hardware configuration, update your development to

the appropriate version.

✓ The developed program should be tested separately before taking to field service and

should be shipped to the field after the tests are successfully completed.

✓ Take all accident prevention measures and safety measures identified by local law

Failure to comply with these rules may result in death, serious injury or property damage

12 Distributed Control Systems / Programming Manual

1 LOGIC GATE BLOCKS

1.1 EDGE GATE

1.1.1 Connections

I: Signal input

#EDG0: Output of the block

R/F: Rising or falling edge selection

O/F: One/Full cycle selection

Res: Reset pin

1.1.2 Connection Explanations

I: Signal input

It is the input that detects edge state.

R/F: Rising or/and falling edge selection

It is used for choosing rising or falling edge detection from outside of the block.

If 0, falling edges are detected,

If 1, rising edges are detected,

If 2, both falling and rising edges are detected.

O/F: One/full cycle selection

If it is 0, full cycle is selected. After an edge is detected, until the reset signal is detected output

signal becomes and stays high(1).

If it is 1, one cycle is selected. After an edge is detected, output becomes high(1) for one clock

cycle and then becomes low(0).

Res: Reset pin

13 Distributed Control Systems / Programming Manual

It is used to reset the signal when full cycle is selected. Detects the high(1) signal.

#EDG0: Output of the block

It is a binary output

1.1.3 Block Settings

Signal Edge: R/F: It has the same purpose with
rising or/and falling edge selection pin. Rising,
Falling or Rising/Falling options are available.

Cycle Type: O/F: It has the same purpose with
one/full cycle selection pin.

One cycle or full cycle options are available.

1.1.4 Block Explanation

Edge Gate block is used for edge triggering purposes. It detects the rising or the falling edge of

a signal and stays high for one clock cycle or full clock cycle. “R/F” input and “O/F” input

specifies the edge to be detected and cycle type of the output signal. “R/F” input and “O/F” input

can be adjusted in Block settings or can be adjusted by connecting a high or low signal to the

block inputs.

14 Distributed Control Systems / Programming Manual

1.1.4.1 Truth Table

Previous I Current I R/F O/F Res Previous
#EDG0

Current
#EDG0

0 1 0 X 0 0 1

1 1 0 0 0 1 1

1 1 0 1 0 1 0

1 0 0 X 0 0 0

1 0 1 X 0 0 1

0 1 2 X 0 0 1

1 0 2 X 0 0 1

X X X X 1 X 0

1.1.4.2 Signal Flow Diagram

,

15 Distributed Control Systems / Programming Manual

1.2 NOT GATE

1.2.1 Connections

I1: Signal input

#NOT0: Output of the block

1.2.2 Connection Explanations

I1: Signal input

It is the input of the NOT gate.

#NOT0: Output of the block

It is the output of the NOT gate.

1.2.3 Block Settings

There are no block settings.

1.2.4 Block Explanation

Not Gate block is used for inverting the input signals. If the input signal is high(1) the output will

be low(0) and if the input signal is “0” the output will be “1”.

1.2.4.1 Truth Table

I1 #NOT0

1 0

0 1

16 Distributed Control Systems / Programming Manual

1.2.4.2 Signal Flow Diagram

17 Distributed Control Systems / Programming Manual

1.2.5 Sample Application

In the example, HIGH and LOW signals are inverted using NOT Gate.

1.3 OR GATE

1.3.1 Connections

I1: Signal input

#OR0: Output of
the block

I2: Signal input

I3: Signal input

I4: Signal input

1.3.2 Connection Explanations

I1: Signal input

It is the input of the OR gate.

I2: Signal input

It is the input of the OR gate.

18 Distributed Control Systems / Programming Manual

I3: Signal input

It is the input of the OR gate.

I4: Signal input

It is the input of the OR gate.

#OR0: Output of the block

It is the output of the OR gate.

1.3.3 Block Settings

There are no block settings.

1.3.4 Block Explanation

Performs the logic OR operation to the input signals. Truth tables for this gate can be seen in

tables below

1.3.4.1 Truth Table for Two Inputs

Input 1 Input 2 Output 1

0 0 0

0 1 1

1 0 1

1 1 1

1.3.4.2 Truth Table for Three Inputs

Input 1 Input 2 Input 3 Output 1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

19 Distributed Control Systems / Programming Manual

1.3.4.3 Truth Table for Four Inputs

Input 1 Input 2 Input 3 Input 4 Output 1

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

1.4 NOR GATE

1.4.1 Connections

I1: Signal input

#NOR0: Output of
the block

I2: Signal input

I3: Signal input

I4: Signal input

1.4.2 Connection Explanations

I1: Signal input

It is the input of the NOR gate.

I2: Signal input

20 Distributed Control Systems / Programming Manual

It is the input of the NOR gate.

I3: Signal input

It is the input of the NOR gate.

I4: Signal input

It is the input of the NOR gate.

#NOR0: Output of the Block

It is the output of the NOR gate.

1.4.3 Block Settings

There are no block settings.

1.4.4 Block Explanation

NOR Gate is a combination of an OR Gate and a NOT Gate. It gives output as if a NOT gate is

connected to the output of an OR gate. To use this block, at least two inputs must be connected.

When all the inputs are low(0), output will be high(1). Truth tables for this gate can be seen in

diagram below.

1.4.4.1 Truth Table for Two Inputs

Input 1 Input 2 Output 1

0 0 1

0 1 0

1 0 0

1 1 0

1.4.4.2 Truth Table for Three Inputs

Input 1 Input 2 Input 3 Output 1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

21 Distributed Control Systems / Programming Manual

1.4.4.3 Truth Table for Four Inputs

Input 1 Input 2 Input 3 Input 4 Output 1

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

1.4.5 Sample Application

1.4.5.1 High Output

22 Distributed Control Systems / Programming Manual

1.4.5.2 Low Output

1.5 NAND GATE

1.5.1 Connections

I1: Signal input

#NAND0: Output of
the block

I2: Signal input

I3: Signal input

I4: Signal input

1.5.2 Connection Explanations

I1: Signal input

It is the input of the NAND gate.

I2: Signal input

It is the input of the NAND gate.

23 Distributed Control Systems / Programming Manual

I3: Signal input

It is the input of the NAND gate.

I4: Signal input

It is the input of the NAND gate.

#NAND0: Output of the block

It is the output of the NAND gate.

1.5.3 Block Settings

There are no block settings.

1.5.4 Block Explanation

Performs the logic NAND operation to the input signals. It is a combination of an AND Gate and

a NOT Gate. It gives output as if a NOT gate is connected to the output of an AND gate. Output

becomes low(0) only when all the inputs are high(1) otherwise the output is always high(1). To

use this block, at least two inputs must be connected. When two inputs are connected, other

inputs can be left unconnected. Truth tables for this gate can be seen in diagram below.

1.5.4.1 Truth Table for Two Inputs

Input 1 Input 2 Output 1

0 0 1

0 1 1

1 0 1

1 1 0

1.5.4.2 Truth Table for Three Inputs

Input 1 Input 2 Input 3 Output 1

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

24 Distributed Control Systems / Programming Manual

1.5.4.3 Truth Table for Four Inputs

Input 1 Input 2 Input 3 Input 4 Output 1

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

1.5.5 Sample Application

1.5.5.1 HIGH Output

25 Distributed Control Systems / Programming Manual

1.5.5.2 LOW Output

1.6 AND GATE

1.6.1 Connections

I1: Signal input

#AND0: Output of the block

I2: Signal input

I3: Signal input

I4: Signal input

1.6.2 Connection Explanations

I1: Signal input

It is the input of the AND gate.

I2: Signal input

It is the input of the AND gate.

I3: Signal input

It is the input of the AND gate.

26 Distributed Control Systems / Programming Manual

I4: Signal input

It is the input of the AND gate.

#AND0: Output of the block

It is the output of the AND gate.

1.6.3 Block Settings

There are no block settings.

1.6.4 Block Explanation

Performs the logic AND operation to the input signals. To use this block, at least two inputs

must be connected. Truth tables for this gate can be seen in diagrams below.

1.6.4.1 Truth Table for Two Inputs

Input 1 Input 2 Output 1

0 0 0

0 1 0

1 0 0

1 1 1

1.6.4.2 Truth Table for Three Inputs

Input 1 Input 2 Input 3 Output 1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

1.6.4.3 Truth Table for Four Inputs

Input 1 Input 2 Input 3 Input 4 Output 1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

27 Distributed Control Systems / Programming Manual

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

1.6.5 Sample Application

1.6.5.1 HIGH Output

28 Distributed Control Systems / Programming Manual

1.6.5.2 LOW Output

1.7 XOR GATE

1.7.1 Connections

I1: Signal input

#XOR0: Output of
the block

I2: Signal input

I3: Signal input

I4: Signal input

1.7.2 Connection Explanations

I1: Signal input

It is the input of the XOR gate.

I2: Signal input

It is the input of the XOR gate.

I3: Signal input

29 Distributed Control Systems / Programming Manual

It is the input of the XOR gate.

I4: Signal input

It is the input of the XOR gate.

#XOR0: Output of the block

It is the output of the XOR gate.

1.7.3 Block Settings

There are no block settings.

1.7.4 Block Explanation

Performs the logic XOR operation to the input signals. Output becomes high(1) when odd

numbers of high(1) signals present in the input signals. For example, if three inputs are

connected and only one of the inputs are high(1), then the output becomes high(1). To use this

block, at least two inputs must be connected. When two inputs are connected, other inputs can

be left unconnected. Truth tables for this gate can be seen in diagram below.

1.7.4.1 Truth Table for Two Inputs

Input 1 Input 2 Output 1

0 0 0

0 1 1

1 0 1

1 1 0

1.7.4.2 Truth Table for Three Inputs

Input 1 Input 2 Input 3 Output 1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

30 Distributed Control Systems / Programming Manual

1.7.4.3 Truth Table for Four Inputs

Input 1 Input 2 Input 3 Input 4 Output 1

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

1.7.5 Sample Application

1.7.5.1 HIGH Output

31 Distributed Control Systems / Programming Manual

1.8 HIGH GATE

1.8.1 Connections

#HI0: Output of the block

1.8.2 Connection Explanations

#HI0: Output of the block

It is output of the High gate.

1.8.3 Block Settings

There are no block settings.

1.8.4 Block Explanation

The block output is always high(1).

1.8.5 Sample Application

1.8.5.1 HIGH Output

The output of the High Gate block is connected to the input of the Relay Output block. If

Mikrodev PLC system is ON, the output value of the Relay Output block will be high(1),

otherwise, the output of the Relay Output block will be low(0).

32 Distributed Control Systems / Programming Manual

1.9 LOW GATE

1.9.1 Connections

#LOW0: Output of the block

1.9.2 Connection Explanations

#LOW0: Output of the block

It is output of the High gate.

1.9.3 Block Settings

There are no block settings.

1.9.4 Block Explanation

The block output is always low(0).

1.9.5 Sample Application

1.9.5.1 LOW Output

The output of the Gate Low block is connected to the input of the Not Gate block. The output of

the Not Gate block is also connected to the input of the Digital Output block. If Mikrodev PLC

system is on, the Digital Output block output will be high (1), otherwise the Digital Output block

output will be low (0).

33 Distributed Control Systems / Programming Manual

1.10 IMPULSE RELAY

1.10.1 Connections

Trg: Trigger input

#IRLY0: Output of the block
Set: Block set input

Res: Block reset input

1.10.2 Connection Explanations

Trg: Trigger input

Retrieves not the current state of the block output when a rising edge trigger is sent to the “Trg”

input.

Set: Block set input

It is the block input that always makes the block output high (1) in rising edge triggering

Res: Block reset input

It is the block input that always makes the block output low (0) in rising edge triggering.

#IRLY0: Output of the block

It is the block output that produces a low (0) or high (1) output depending on the status of the

block inputs.

1.10.3 Block Settings

There are no block settings

1.10.4 Block Explanation

Impulse Relay block is used for operations such as on-off, set and reset. It is a gate that gives

logic output.

Block output changes position in rising edge trigger coming to “Trg” block input. When the block

output is low (0), when a rising edge trigger (logic 1) signal is applied to the “Trg” input of the

34 Distributed Control Systems / Programming Manual

block, the block output “#IRLY0” goes high (1). While the block output is high (1), the block

output “#IRLY0” goes low (0) when a rising edge trigger (1) signal is applied to the “Trg” block

input.

When the “Set” block input is high (1), the block output “#IRLY0” always goes high (1) if the “Sif”

input of the block is not high (1). When the “Set” block input is in the high (1) position, the block

output “#IRLY0” is high (1) regardless of the position of the “Trg” block input.

Block output “#IRLY0” always goes to low (0) state in case of rising edge trigger coming to the

“Res” input of the block. When the “Res” block input is high (1), the block output “#IRLY0” is

always low (0) even if the other inputs are high (1).

1.10.4.1 Truth Table

The operations in the truth table are done in order from top to bottom in the table.

Trg Set Sıf #IRLY0

0 0 0 0

0 0 1 0

0 1 0 1

1 0 0 0

0 0 0 0

1 0 0 1

0 0 1 0

0 1 0 1

1 1 0 1

1 1 1 0

35 Distributed Control Systems / Programming Manual

1.10.4.2 Signal Flow Diagram:

Block Output with Trg Input (#IRLY0)

Block Output with Set and Res Input (#IRLY0)

36 Distributed Control Systems / Programming Manual

1.10.5 Sample Application

1.10.5.1 Trg Input

The “#IRLY0” position of the block output is observed in the example, depending on the rising

edge trigger coming to the “Trg” block input. Initially, the “Trg” block input and the block output

“#IRLY0” are low (0), while the “Trg” input of the block is high (1), the block output “#IRLY0” is

also high (1). When the “Trg” block input goes low (0), the block output “#IRLY” stays high (1).

When the “Trg” block input goes to high (1) again, the block output “Q1” goes to the low (0)

position. When the “Trg” block input goes low (0) again and then goes high (1) again, the block

output “#IRLY0” will go high (1) again.

37 Distributed Control Systems / Programming Manual

1.10.5.2 Set Input

In the example, with the rising edge trigger coming to the “Set” input of the block, the block

output “#IRLY0” has moved to the high (1) position. Although the “Set” block input went low (0),

the block output “#IRLY0” kept its high (1) position. When a high (1) signal is applied to the

“Res” block input, the block output “O1” is set to low (0).

38 Distributed Control Systems / Programming Manual

1.11 SHIFT BLOCK

1.11.2 Connections

In: Value input to shift

#Shft0: Output of the block

Loa: Value loading input

Dir: Direction input

Clk: Start shifting input

1.11.3 Connection Explanations

In: Value input to shift

The “In” block input is the value input to be shifted.

Loa: Value loading input

In order for the value of the "In" input of the block to be shifted to be loaded into the block, a

rising edge trigger must be given to this input.

Dir: Direction input

Bloğun “Dir” girişi, “In” blok girişindeki değerin kaydırılacağı yönü belirlemek için kullanılır.

Clk: Start shifting input

The “Clk” block input starts the shift of the value in the “In” block input, which is enclosed in

each rising edge trigger..

#Shft0: Output of thr block

The output of the block “#Shft0” is the output of the block to which the shifted value is

transferred.

39 Distributed Control Systems / Programming Manual

1.11.4 Block Settings

Write On Input: If selected, the shifted value
overwrites the value in the "In" input of the block.

Direction:
Right: If when selected, shifting is done to the right.
(divide by two.)

Left: If when selected, shifting is done to the left.
(divide by two)

1.11.5 Block Explanation

The Shift block is used when a value is shifted to the right or left. Shift means shifting one bit

right or left, i.e., multiplying by 2 or dividing by 2.

In input: It is the input of the value to be shifted. Since the block output is a 16-bit word, the

value to be shifted should be defined accordingly.

Loa input: It is used to include the value of the "In" input of the load, that is, the block to be

shifted, into the block.

Clk input: Performs scrolling on each rising edge trigger.

The shifted value is transferred to the "#Shft0" output.

40 Distributed Control Systems / Programming Manual

The working logic of the shift block, the register data at the input of the "In" block, when a high

level signal is applied to the "Loa" input of the block, the data to be shifted is taken into the

block. When the rising edge trigger is applied to the "Clk" block input, the "Dir" block input value

is shifted according to the direction status. If a high level signal comes to the “Loa” input of the

block while the scrolling process is in progress, the value at the “In” block input of the shift is

reloaded into the block. Scrolling only once as long as information comes to the "Loa" block

input.

1.11.6 Sample Application

1.11.6.1 Shift Right

(5)

41 Distributed Control Systems / Programming Manual

In the example, the right shift is done. The value in the "In" block input is included in the Shift

block and divided by 2. After the value to be shifted is written to the “In” input of the block, the

“Loa” block input is made high (1) and the value at the “In” block input is included in the Shift

block. Since the value in the "In" block input is included in the shift block, the "Loa" block input is

set to low (0) in picture (3). Then, in each rising edge trigger that comes to the "Clk" block input,

the value in the block is shifted to the right by 1 bit (divided by 2) and the shifting process will

continue until the value in the block is reset. Low (0) is selected because the "Dir" block input

will be shifted to the right.

1.11.6.2 Shift Left

In the left shift example, firstly, the "Dir" block input is set to high (1) so that the left shift can be

performed. Then, the value to start the shifting operation is written to the Word Register block

connected to the “In” block input. In Picture (2), the "Loa" and "Clk" block inputs are made high

(1) and the value in the "In" block input is written to the block output. In picture (3), the "Loa"

42 Distributed Control Systems / Programming Manual

block input is reset and in picture (4), the value in the block is shifted to the left in each rising

edge trigger that comes to the "Clk" block input. (Multiplied by 2.)

1.12 BİT MERGE BLOCK

1.12.7 Connections

Bin: 0. Bit input

#BMB0: Output of the block

İki: 1. Bit input

İki: 2. Bit input

İki: 3. Bit input

İki: 4. Bit input

İki: 5. Bit input

İki: 6. Bit input

İki: 7. Bit input

1.12.8 Connection Explanations

İki: 0. Bit input

0. Bit identification input

İki: 1. Bit input

1. Bit identification input

İki: 2. Bit input

2. Bit identification input

İki: 3. Bit input

3. Bit identification input

İki: 4. Bit input

4. Bit t identification input

İki: 5. Bit input

43 Distributed Control Systems / Programming Manual

5. Bit identification input

İki: 6. Bit input

6. Bit identification input

İki: 7. Bit input

7. Bit identification block

#BMB0: Output of the block

Output where bits are combined and written in decimal

1.12.9 Block Settings

There are no block settings.

1.12.10 Block Explanation

It is used to combine a maximum of 8 bits in binary and transfer them to the block output as 1

byte. If all the bits connected to the block input are high (1), the block output takes the maximum

value (255). Of the block inputs, the 0th bit input is for the least significant bit (LSB), and the 7th

Bit input is for the most significant bit (MSB).

44 Distributed Control Systems / Programming Manual

1.12.11 Sample Application

1.12.11.1 8 Bit Merge

In the example, if the 0, 3 and 7 bits of the bit Bit Merge block are high (1) and the other bits are

low (0), the decimal values of the bits are seen at the output of the block.

In the 1st picture; the 0th bit input is in the high (1) position; The decimal equivalent of the 0th bit

is written to the 2⁰=1 block output..

In the 1st picture; The 3rd bit input is in the high (1) position; The decimal equivalent of the 3rd

bit is written to the 2³=8 block output.

In the 2nd picture; The 7th bit input is in the high (1) position; The decimal equivalent of the 7th

bit is written to the 2⁷=128 block output.

45 Distributed Control Systems / Programming Manual

In the 3rd picture; Since the 0th, 3rd, and 7th bit inputs are in the high (1) position; The decimal

equivalent of the 0th, 3rd, and 7th bits is written to the block output as (1+8+128) =137.

1.12.11.2 16 Bit Merge

16 bits can be combined using 2 Bit Merge blocks. For this, the output of one of the Bit Merge

block must be connected to the “InA” input of the Word Math block “Q1” and the output of the

other Bit Combining block “Q1” to the “InB” input of the Word Math block. The Word Process

block settings (double click on the block) and select the math type Merge A-B.

In this case, the decimal number value at the output of the Bit Merge block connected to the

“InA” input of the Word Math block is transferred directly to the output of the Word Math block.

The decimal number value at the output of the Bit Merge block connected to the “InB” input of

the Word Math block is transferred to the output of the Word Math block by shifting 8 bits (by

multiplying the decimal value of each bit by 256).

46 Distributed Control Systems / Programming Manual

In the example, bit 0 of the Bit Merge block connected to the “InA” input of the Word Math block

is high (1) and the decimal number value is 2⁰=1.

Bit 0 of the Bit Merge block connected to the “InB” input of the Word Math block is high (1) and

2⁰*256=256 since this value will be transferred to the Word Math block output by multiplying by

256.

The 7th bit of the Bit Merge block connected to the “InB” input of the Word Math block is high (1)

and it is 2⁷*256=32768 since this value will be transferred to the Word Math block output by

multiplying by 256.

The decimal value of the 3 high (1) bits; Read in Word Math block output as

1+256+32768=33025.

1.13 CUSTOM GATE

1.13.1 Connections

I1: Signal input

#CG0: Output of
the block

I2: Signal input

I3: Signal input

I4: Signal input

47 Distributed Control Systems / Programming Manual

1.13.2 Connection Explanations

I1: Signal input

It is the 1st input of the Custom Gate block.

I2: Signal input

It is the 2nd input of the Custom Gate block.

I3: Signal input

It is the 3rd input of the Custom Gate block.

I4: Signal input

It is the 4th input of the Custom Gate block.

#CG0: Output of the block

It is the output of the Custom Gate block. It produces a binary (1-0) value.

1.13.3 Block Settings

Custom Gate: It is a special output definition
table for 4 block inputs.

48 Distributed Control Systems / Programming Manual

1.13.4 Block Explanation

It allows the user to design a desired type of logic gate with the selections made from the block

settings. According to the position of the inputs from the block settings, the user can choose

which value to be displayed in the output.

1.13.5 Sample Application

In the example, in the selections made from the block properties, if the “I1” and “I3” block inputs

are high (1) at the same time, the block output will be high (1), in all other cases the block output

will be low. In the design, whether the “I2” and “I4” block inputs are high (1) or low (0) has no

effect on the state of the output signal.

49 Distributed Control Systems / Programming Manual

2 INPUT-OUTPUT BLOCKS

2.1 DIGITAL INPUT BLOCK

2.1.1 Connections

#DI0: Output of the block

2.1.2 Connection Explanations

#DI0: Output of the block

Output of the block which represents the digital input

2.1.3 Block Settings

Reserved Digital Input No: Digital input index no can
be assigned in Block Settings.

50 Distributed Control Systems / Programming Manual

2.1.4 Block Explanation

It is used to read the physical digital input on the device. Used for the inputs on the main unit

and expansion units.

Digital Input block is an input which takes binary (0,1) values. Some examples are optical

sensors and switches.

Available inputs are listed while selecting the digital input in the block settings menu. Inputs

which are used before will not be listed on the list, so there is only one block to add to the

project for a physical input on the device. If the digital input will be used in multiple blocks’

inputs, related digital input block’s output can be labeled and can be used in related blocks

2.1.5 Sample Applications

When the Digital Input block (DI0) is set 1, the block output is set to 1 too. The Relay Output

block (RQ1) connected to the block output is also set to 1.

(In the example, the digital input is a button, and the relay output may also be used to operate a

motor.)

51 Distributed Control Systems / Programming Manual

2.2 DIGITAL OUTPUT BLOCK

2.2.1 Connections

I1: I nput of the block

#DQ0: Output of the block

2.2.2 Connection Explanations

I1: Input of the block

Input of the block for the value which will be written to the digital output

#DQ0: Output of the block

Output of the block which represents the value of the digital output.

2.2.3 Block Settings:

Reserved Digital Output Number: Digital output
number can be assigned in Block Settings.

52 Distributed Control Systems / Programming Manual

2.2.4 Block Explanation

It is used to write values to the physical digital outputs on the device. Used for the outputs on

the main unit and the expansion units.

Digital Output block is an output which takes binary (0,1) values.

Available outputs are listed while selecting the digital output in block settings menu. Outputs

which are used before will not be listed, so there is only one output block to add to the project

for a physical output on the device.

Some digital outputs may be used with PWM /PTO blocks. After the PWM/PTO blocks are

activated, related physical digital outputs will be controlled by PWM/PTO blocks. When the

PWM/PTO blocks are deactivated, physical digital outputs will be controlled by the Digital

Output block on the project.

2.2.5 Sample Applications

The Digital Output block’s I1 input is connected to the Word Register block’s output. When in

Word Register block is set to a value other than 0, Digital Output block is set 1 and active. When

the Digital Output block receives a value of 1, a device connected to this output can be set on.

(engine, lamp, pump etc.)

53 Distributed Control Systems / Programming Manual

2.3 ANALOG INPUT BLOCK

2.3.1 Connections

#AI0: Output of the block

2.3.2 Connection Explanations

#AI0: Output of the block

Output of the block which represents the analog input.

2.3.3 Block Settings

Reserved Analog Input No: Analog input index can be
selected within the block.

54 Distributed Control Systems / Programming Manual

2.3.4 Block Explanation

It is used to read physical analog input on the device. Used for the inputs on the main unit and

expansion units.

It is determined by the hardware that the block’s input is a voltage output or current output.

Range of the input is also determined by the hardware.(i.e. 0-10mV, 0, 20mA…) It is assumed

that the developer has that information. The value read on the output of the block is floating

point value. For example, if 12.48 mA current is applied to the analog input, the output of the

block will have the value 12.48.

Available analog inputs are listed while selecting the analog input in block settings menu.

Analog inputs which are used before will not be listed, so there is only one Analog Input block to

add to the project for a physical analog input on the device. If the analog input will be used in

multiple blocks’ inputs, related analog input block’s output can be labeled and can be used in

related blocks.

2.3.5 Sample Application

Analog Input0 (AI0) is selected in the example. A device model with physical analog input

values between 4-20mA is selected. An analogue sensor is usually connected to the analog

input. (level, flow meter, temperature, humidity etc.) The analog input block is connected to the

point calibrator block. It is calibrated to zero for 4 mA and 100 for 20 mA.

55 Distributed Control Systems / Programming Manual

2.4 ANALOG OUTPUT BLOCK

2.4.1 Connections

I1: Input of the block

#AQ0: Output of the block

2.4.2 Connection Explanations

I1: Input of the block

Input of the block for the value that will be written to the analog output.

#AQ0: Output of the block

Output of the block which represents the value of the analog output.

2.4.3 Block Settings

Reserved Analog Output Number: Analog output
number can be assigned in Block Settings.

56 Distributed Control Systems / Programming Manual

2.4.4 Block Explanation

It is used to write values to the physical analog outputs on the device. Used for the outputs on

the main unit and the expansion units.

It is decided by the hardware that the output is a voltage output or current output. Range of the

output is also decided by the hardware.(i.e. 0-10mV, 0, 20mA…) It is assumed that the

developer has that information. The value read on the output of the block is floating point value.

For example, if the desired voltage on the output is 7.56 V, 7.56 should be written on the input

of the block.

Available outputs are listed while selecting the analog output in block settings menu. Outputs

which are used before will not be listed, so there is only one output block to add to the project

for a physical analog output on the device.

2.4.5 Sample Application

In the example, 5 and 20 values are written to the analog outputs. If the device is 0-20mA

compatible output model, the values read at the analog output will be 5mA and 20mA.

Note: When the analog output is less than 0 or greater than 20, it is filtered and a maximum of

20mA at the block output is read at a minimum of 0mA.

57 Distributed Control Systems / Programming Manual

2.5 RELAY OUTPUT BLOCK

2.5.1 Connections

I1: Input of the block

#RQ0: Output of the block

2.5.2 Connection Explanations

I1: Input of the block

Input of the block for the value which will be written to the relay output.

#RQ0: Output of the block

Output of the block which represents the value of the relay output.

2.5.3 Block Settings

Reserved Relay Output Number: Relay output index
number can be assigned in Block Settings.

58 Distributed Control Systems / Programming Manual

2.5.4 Block Explanation

It is used to write values to the physical relay outputs on the device. Used for the outputs on the

main unit and expansion units.

Relay Output block is an output which takes binary values.(0,1).

Available relay outputs are listed while selecting the relay output in block settings menu. Relay

outputs, which are used before, will not be listed. So there is only one Relay Output block to add

to the project for a physical relay output on the device.

2.5.5 Sample Application

In the example, Relay Output 0 (RQ0) is selected. When a signal other than 0 is received of the

I1 input of the Relay Output block, the relay output is set to 1. (In all values different than 0; -1,

0.001, 10, etc.) The relay coil is energized and the relay open contact is closed.

59 Distributed Control Systems / Programming Manual

2.6 RTD INPUT BLOCK

2.6.1 Connections

#RTD0: Output of the block

2.6.2 Connection Explanations

#RTD0: Output of the block

Output of the block, which represents the RTD input.

2.6.3 Block Settings

Reserved RTD Input Number: RTD input number can
be assigned in Block Settings.

60 Distributed Control Systems / Programming Manual

2.6.4 Block Explanation

It is used to read physical RTD inputs on the device. It is used for the inputs on the main unit

and expansion units.

RTD Input block corresponds to one of the resistance thermometers, PT100, PT1000 or NTC.

Type of the thermometer is determined by the hardware and it is assumed that the developer

has the required information. The value read at the output of the block is a floating-point value.

Block gives the corresponding temperature value of the resistance value read from the RTD

Input block in Celsius. Integrated conversion tables for PT100 and PT1000 are provided.

Available RTD inputs are listed while selecting the RTD input in block settings menu. RTD

inputs, which are used before, will not be listed. So there is only one RTD Input block to add to

the project for a physical RTD input on the device. If the RTD input will be used in multiple

blocks’ inputs, related RTD Input block’s output can be labeled and can be used in related

blocks.

2.6.5 Sample Applications

61 Distributed Control Systems / Programming Manual

The temperature sensor was connected to the RTD input and the air conditioning heating

temperature control was performed with the hysteresis block. With the hysteresis block, the low

limit and high limit are selected with as minimum temperature of 21 degrees and as maximum of

23 degrees.

If the RTD Input block’s temperature is lower than 23 degrees at the beginning, the air

conditioner that is connected output of relay will be operated. As soon as the RTD Input block’s

temperature exceeds 23 degrees, the air conditioner will be switched off. As soon as the RTD

Input block’s temperature is lower than 21 degrees, the air conditioner will be restarted. When

the RTD Input blok’s temperature exceeds 23 degrees, will be closed again.

Thus, the RTD Input block’s temperature value will be kept constant between 21 and 23

degrees.

62 Distributed Control Systems / Programming Manual

2.7 LOCKED DIGITAL INPUT BLOCK

2.7.1 Connections

#LDI0: Real binary input

LSt: Lock state

LVa: Lock value

2.7.2 Connection Explanations

#LDI0: Real binary input

Locked digital input block value.

LSt: Lock state

Indicates whether the block is locked or not.

LVa: Lock value

Indicates the value which will be written to the output when locked.

63 Distributed Control Systems / Programming Manual

2.7.3 Block Settings

Reserved Digital Input Number: Digital input index
number can be assigned in Block Settings.

Locked: Locking settings of the block. Activates or
deactivates locking.

Lock / Offset:
Lock: Writes the value at the lock or shift box to the
output.

Offset: It is disabled on digital inputs with locks.

2.7.4 Block Explanation

Locked Input/Output blocks are used to assign values which are different from the real physical

values to the physical input/output blocks. In some situations, expected logic value cannot be

retrieved from the field, due to some reasons like an error with a sensor.

In order for the logic project to run properly, until the error is fixed, erroneous value should be

ignored and some proper value must be forced onto input. Locked blocks are used to treat

situations like this.

#LDI0 (the first output of the block): If the block is locked, the value at the first output of the

block is equal to the locked value in the block settings. If the block is not locked, it is equal to the

related physical input’s value.

64 Distributed Control Systems / Programming Manual

LSt (the second output of the block): Indicates the state of the block. If locking is active, it is

high(1), otherwise it is low(0). This output is mapped into Modbus addresses and can be read

and written remotely. The Modbus address of this value is “block output’s modbus address plus

1”.

LVa (the third output of the block): Indicates the value which will be written to the output when

the block is locked. This output is mapped into Modbus addresses and can be read and written

remotely. The Modbus address of this value is “block output’s Modbus address plus 2”.

As an example; if block modbus address of the block is 1003, mapping will be the in following

way: first output 1003, second output 1004, third output 1005.

2.7.5 Sample Applications

2.7.5.1 Locking to Zero (0)

(1) (2)

65 Distributed Control Systems / Programming Manual

The example is designed to accept a value of 0 in the digital input when the actual signal value

to the digital input is not desired. (sensor failure, etc.).

The block "Bin" output has the actual value read from the digital input according to the

picture(1). If 0 is present at the “LSt” output, locking is not active.

In the picture(2), the value of 1 at the "LSt" output means that the locking is active and that the

value at the LVa output is printed on the "Bin" output. If the value at the output of "LVa" had

been 1, also the value at the "Bin" output would had been 1.

To make the LSt output 1 or 0, you can write to the 1001st Modbus address. (for this example)

In this case, it is possible to write to 1008th Modbus address to make LVa output 1 or 0. (The

"Bin" output of the block is the Modbus Address 1000, the LSt output 1001 and the LVa output

1002. Each output of the block corresponds to a Modbus address.)

66 Distributed Control Systems / Programming Manual

2.7.5.2 Locking to One (1)

 (1) (2)

67 Distributed Control Systems / Programming Manual

The example is designed to accept a value of 1 in the digital input when the actual signal value

to the digital input is not desired. (sensor failure, etc.).

The block "Bin" output has the actual value read from the digital input according to the

picture(1). If 0 is present at the “LSt” output, locking is not active.

In the picture(2), the value of 1 at the "LSt" output means that the locking is active and that the

value at the LVa output is printed on the "Bin" output. If the value at the output of "LVa" had

been 1, also the value at the "Bin" output would had been 1.

The "Bin" output is 1 when the output "LSt" is 1. Because the locking value at the output of

"LVa" is 1. Therefore, the value at output "LVa" is written on output "Bin" when output "LSt" is 1.

To make the LSt output 1 or 0, you can write to the 1001st Modbus address. (for this example)

In this case, it is possible to write to 1008th Modbus address to make LVa output 1 or 0. (The

"Bin" output of the block is the Modbus Address 1000, the LSt output 1001 and the LVa output

1002. Each output of the block corresponds to a Modbus address.)

2.8 LOCKED ANALOG INPUT BLOCK

2.8.1 Connections

#LAI0: Analog input lock value

LSt: Lock state

LVa: Lock value

2.8.2 Connection Explanations

#LAI0: Analog input lock value

Locked analog input block value.

LSt: Lock state

Indicates whether the block is locked or not.

LVa: Lock value

Indicates the value which will be written to the output when locked.

68 Distributed Control Systems / Programming Manual

2.8.3 Block Settings

Reserved Analog Input Number: Analog input index
number can be assigned in Block Settings.

Locked: Locking settings of the block. Activates or
deactivates locking

Lock / Offset:

Lock: Write the value at the lock or shift box to the
output.

Offset: It is not activated on digital inputs with locks.

2.8.4 Block Explanation

Locked Input/Output blocks are used to assign values which are different from the real physical

values to the physical input/output blocks. In some situations, expected logic value cannot be

retrieved from the field, due to some reasons like an error with a sensor.

In order for the logic project to run properly, until the error is fixed, erroneous value should be

ignored and some proper value must be forced onto input. Locked blocks are used to treat

situations like this.

#LAI0 (the first input of the block): If the block is locked, the value at the first output of the block

is equal to the locked value in the block settings. If the block is not locked, it is equal to the

related physical input’s value.

69 Distributed Control Systems / Programming Manual

LSt (the second input of the block): Indicates the state of the block.

If the block is locked(active) and the specified value will be written to the output it is 1.0;

if the block is locked(active) and an offset value will be added to the real value it is 2.0;

if the block is not locked(passive) it is 0.0.

This output is mapped into Modbus addresses and can be read and written remotely. The

Modbus address of the output is “block output’s modbus address plus 2”

LVa (third output of the block): Indicate the value which will be written or added to the output

when the first output is 1 or 2 respectively. This output is mapped into Modbus addresses and

can be read or written remotely. The Modbus address of the output is “the block output’s

modbus address plus 4”.

As an example; if block modbus address of the block is 6006, mapping will be the in following

way: first output 6006, second output 6008, third output 6010.

2.8.5 Sample Applications

2.8.5.1 Locking a Value

(1) (2)

70 Distributed Control Systems / Programming Manual

In the example, the actual signal value for the device analog input is 5.95. When the block “LSt”

output is 0, the actual value of the analog input is written to the “Ana” output. (Picture1)

In the case where the analog input actual value is not desired to be used, LSt output is set to 1

and the locking value at the LVa output is written to the block "Ana" output. (Picture2)

Block “Ana” output Modbus address is 6000. In this case the LSt output is 6002, the LVa output

is 6004. When the 6002nd Modbus address is written 1, the value at 6004th Modbus address is

written to the “Ana” output. The actual analog input signal value or lockout value of the block

output is determined by the LSt output.

If the LSt output is 0, the actual signal value is written to the “Ana” block output, and if LSt

output is 1, the Lock value is written to the “Ana” block output.

2.8.5.2 Adding Offset Value to Actual Value

(1) (2)

71 Distributed Control Systems / Programming Manual

In the example, when the output LSt is 0, the analog input actual signal value is written to the

block output. On Figure 2, 2 is written on LSt Output.

To add the value at the LVa output to the actual signal value, a value of 2 is written to the LSt

output.

When the LSt output is 2, the value at the LVa output is added to the actual signal value (5.95;

for this example), and the total value is written to the block Ana output. (5.95 + 8.8= 14.75)

72 Distributed Control Systems / Programming Manual

2.9 LOCKED RTD INPUT BLOCK

2.9.1 Connections

 #LRTD0: RTD input lock value

LSt: Lock state

LVa: Lock value

2.9.2 Connection Explanations

#LRTD0: RTD input lock value

Locked RTD block value.

LSt: Lock state

Indicates whether the block is locked or not.

LVa: Lock value

Indicates the value which will be written/added to the output when locked.

73 Distributed Control Systems / Programming Manual

2.9.3 Block Settings

Reserved RTD Input Number: RTD input number can
be assigned in Block Settings.

Locked: Locking settings of the block. Activates or
deactivates locking

Lock / Offset:

Lock: Write the value at the lock or shift box to the
output.

Offset: It is not activated on digital inputs with locks.

2.9.4 Block Explanation

Locked Input/Output blocks are used to assign values which are different from the real physical

values to the physical input/output blocks. In some situations, expected logic value cannot be

retrieved from the field, due to some reasons like an error with a sensor.

In order for the logic project to run properly, until the error is fixed, erroneous value should be

ignored and some proper value must be forced onto input. Locked blocks are used to treat

situations like this.

Offset property of the Locked RTD Input blocks, being different from the other locked blocks, is

used to correct the cable resistance error between the RTD and the device. For example, a

74 Distributed Control Systems / Programming Manual

PT1000 sensor which is 300 meters away from the unit has a cable resistance around 35

Ohms. Offset value should be set to -35.0 to compensate the extra resistance caused by the

cable.

#LRTD0 (the first input of the block): If the block is locked, the value at the first output of the

block is equal to the locked value in the block settings or it is equal to the sum of the real value

and the offset value. If the block is not locked, it is equal to the related physical input’s value.

LSt (the second input of the block): Indicates the state of the block.

If the block is locked(active) and the specified value will be written to the output it is 1;

if the block is locked(active) and an offset value will be added to the real value it is 2;

if the block is not locked(passive) it is 0.

This output is mapped into Modbus addresses and can be read and written remotely. The

Modbus address of the output is “block output’s modbus address plus 2”.

LVa (third output of the block): Indicates the value which will be written or added to the output

when when the first output is 1 or 2 respectively. This output is mapped into Modbus addresses

and can be read or written remotely. The Modbus address of the output is “block output’s

Modbus address plus 4”.

As an example; if block modbus address of the block is 6012 : first output 6012, second output

6014, third output 6016.

75 Distributed Control Systems / Programming Manual

2.9.5 Sample Applications

2.9.5.1 Locking a Value

In the example, the device shows the actual signal value -200 from the RTD temperature input.

This value means that the sensor is not connected to the RTD input or there is a problem with

the connected sensor or cable line. Picture(1)

In Picture 2, there is a problem with the sensor at RTD input. In this case, a value has been

locked.

In the locked RTD temperature input block, the actual value at the block RTD input is set to the

“Ana” output block while the LSt output is 0.

When there is a problem with the RTD input, 1 is written to the LSt output and the locking value

at the LVa output is written in degrees Celsius to the “Ana” output.

In this example, the Modbus Address of the Locked RTD temperature input block is 6000 and

can only be read.

In this case, the corresponding values can be written to the LSt output from the 6002nd Modbus

address and the LVa output from the 6004th Modbus address.

76 Distributed Control Systems / Programming Manual

2.9.5.2 Adding Offset Value to Actual Value

(1) (2)

In this example, there is a problem with the sensor or sensor connection in Figure 1.

In Figure 2, it is written to LSt output 2 and the offset is added. The process of adding offset is in

Ohms. The added 1200 Ohm value corresponds to 25.77 °C as the temperature.

Note: If LSt output is 1, the value at output LVa is in °Cs. If LSt output is 2, the value at LVa

output is in Ohms.

77 Distributed Control Systems / Programming Manual

2.10 LOCKED DIGITAL OUTPUT BLOCK

2.10.1 Connections

I1: Block input

#LDO0: Real binary output

LSt: Lock state

LVa: Lock value

2.10.2 Connection Explanations

I1: Block input

Indicates the value which will be written to the output when unlocked.

#LDO0: Real binary output

Locked digital output block value.

LSt: Lock state

Indicates whether the block is locked or not.

LVa: Lock value

Indicates the value which will be written to the output when locked.

78 Distributed Control Systems / Programming Manual

2.10.3 Block Settings

Reserved Digital Output Number: Digital output
number can be assigned in Block Settings.

Locked: Locking settings of the block. Activates or
deactivates locking

Lock / Offset:
Lock: Write the value at the lock or shift box to the
output.
Offset: It is not activated on digital inputs with locks.

2.10.4 Block Explanation

Locked Input/Output blocks are used to assign values which are different from the real physical

values to the physical input/output blocks. In some situations, expected logic value cannot be

retrieved from the field, due to some reasons like an error with a sensor.

In order for the logic project to run properly, until the error is fixed, erroneous value should be

ignored and some proper value must be forced onto input. Locked blocks are used to treat

situations like this.

#LDO0 (the first output of the block): If the block is locked, the value at the first output of the

block is equal to the locked value in the block settings. If the block is not locked, it is equal to the

related physical input’s value.

LSt (the second output of the block): Indicates the state of the block. It is 1 if the block is

locked(active), 0 otherwise(passive). This output is mapped into Modbus addresses and can be

79 Distributed Control Systems / Programming Manual

read and written remotely. The Modbus address of the output is “the block output’s modbus

address plus 1”.

LVa (the third output of the block): Indicates the value, which will be written to the output when

the block is locked. This output is mapped into Modbus addresses and can be read and written

remotely. The Modbus of the value is “the block output’s modbus address plus 2”.

As an example, if block modbus address of the block is 1006: first output 1006, second output

1007, third output 1008.

80 Distributed Control Systems / Programming Manual

2.10.5 Sample Applications

81 Distributed Control Systems / Programming Manual

In this project, the output of the Digital Input (DI0) block is connected to the Locked Digital

Output block input.

Locking is not active in LDO block; The LDO block 'Bin' output will be 1 when the DI0 block is 1.

The LDO block 'Bin' output will be 0 when the DI0 block is 0.

Locking not active: Locking is not active because LSt output is 0 in figure1. Therefore the value

of the Digital Input (DI0) is transferred to the 'Bin' output of the LDO block.

Locking active: In figure(2), Locking is active because LSt output is shown as 1.

Therefore the value 0 at the LVa output is written to the block 'Bin' output.

Locking active: In figure(3), Locking is active because LSt output is shown as 1.

Therefore the value 1 at the LVa output is written to the LDO block 'Bin' output.

Modbus addresses can be used to change the values of the LSt and LVa outputs of the LDO

block. The Modbus address of the LDO block's Bin output is 1005. (for this example) In this

case, the Modbus address of the LSt output is 1006, the Modbus address of the LVa output is

1007.

2.11 LOCKED ANALOG OUTPUT BLOCK

2.11.1 Connections

I1: Block input

 #LAO0: Analog lock output

LSt: Lock state

LVa: Lock value

2.11.2 Connection Explanations

I: Block input

Indicates the value which will be written to the output when unlocked.

#LAO0: Analog lock output

82 Distributed Control Systems / Programming Manual

Locked analog output block value.

LSt: Lock state

Indicates whether the block is locked or not.

LVa: Lock value

Indicates the value which will be written to the output when locked.

2.11.3 Block Settings

Reserved Analog Output Number: Analog output
number can be assigned in Block Settings.

Locked: Locking settings of the block. Activates or
deactivates locking

Lock / Offset:
Lock: Write the value at the Lock or Shift box to the
output.
Offset: It is not activated on digital inputs with locks.

2.11.4 Block Explanation

Locked Input/Output blocks are used to assign values, which are different from the real physical

values to the physical input/output blocks. In some situations, expected logic value cannot be

retrieved from the field, due to some reasons like an error with a sensor.

83 Distributed Control Systems / Programming Manual

In order for the logic project to run properly, until the error is fixed, erroneous value should be

ignored and some proper value must be forced onto input. Locked blocks are used to treat

situations like this.

#LAO0 (the first output of the block): If the block is locked, the value at the first output of the

block is equal to the locked value in the block settings. If the block is not locked, it is equal to the

related physical input’s value.

LSt (the second output of the block): Indicates the state of the block. It is 1 if the block is

locked(active), 0 otherwise(passive). This output is mapped into Modbus addresses and can be

read and written remotely. The Modbus address of the output is of the “block output’s Modbus

address plus 2”.

LVa (the third output of the block): Indicates the value, which will be written to the output when

the block is locked. This output is mapped into Modbus addresses and can be read and written

remotely. The Modbus address of the output is “the block output’s Modbus address plus 4”.

As an example; if modbus address of the block is 6018: first output 6018, second output 6020,

third output 6022.

84 Distributed Control Systems / Programming Manual

2.11.5 Sample Applications

2.11.5.1 Locking a Value

 (1) (2)

In the sample project, the output of the Analog Input block is connected to the Locked Analog

Output (LOA) block input.

When locking is not active in LOA block; The LOA block “Ana” output will be 4.92 when the AI0

block is 4.92.

The value of the signal on the AI0 block and “Ana” output of the LOA block will always be the

same when locking and offset scrolling is inactive.

Locking not active: Locking is not active because LSt output is 0 in figure1. The value of the

analog input (AI0) is written to the “Ana” output of the LOA block.

Locking active: Locking is active because LSt output is shown as 1 in figure2. '8.2' value at the

LVa output is written to the LOA block “Ana” output.

Modbus addresses can be used to change the values of the LSt and LVa outputs of the LOA

block. The Modbus address of the “Ana” output of the LOA block is 6000. (for this example) In

this case the Modbus address of the LSt output is 6002, the Modbus address of the LVa output

is 6004.

85 Distributed Control Systems / Programming Manual

2.11.5.2 Adding Offset Value to Actual Value

 (1) (2)

Locking active: Locking is active because LSt output is 1 in Figure1 and 8.2 value on LVa output

is written to the "Ana" output of the block.

Shift active: The shift is active in Figure 2 because LSt output is 2, the value of 8.2 in the LVa

output and the value of AI0 signal in the LOA block input have been collected and written to the

block "Ana" output. (8.2 + 4.92 = 13.12)

Modbus addresses can be used to change the values of the LSt and LVa outputs of the LOA

block. The Modbus address of the “Ana” output of the LOA block is 6000. (for this example) In

this case the Modbus address of the LSt output is 6002, the Modbus address of the LVa output

is 6004.

86 Distributed Control Systems / Programming Manual

2.12 LOCKED RELAY OUTPUT BLOCK

2.12.1 Connections

I1: Block input

#LRO0: Relay lock output

LSt: Lock state

LVa: Lock value

2.12.2 Connection Explanations

I1: Block input

Indicates the value which will be written to the output when unlocked.

#LRO0: Relay lock output

Locked relay output block value.

LSt: Lock state

Indicates whether the block is locked or not.

LVa: Lock value

Indicates the value which will be written to the output when locked.

87 Distributed Control Systems / Programming Manual

2.12.3 Block Settings

Reserved Relay Output Number: Relay output index
number can be selected here

Locked: Locking settings of the block. Activates or
deactivates locking

Lock / Offset:
Lock: Write the value at the lock or shift box to the
output.
Offset: It is not activated on digital inputs with locks.

2.12.4 Block Explanation

Locked Input/Output blocks are used to assign values which are different from the real physical

values to the physical input/output blocks. In some situations, expected logic value cannot be

retrieved from the field, due to some reasons like an error with a sensor.

In order for the logic project to run properly, until the error is fixed, erroneous value should be

ignored and some proper value must be forced onto output. Locked blocks are used to treat

situations like this.

#LRO0 (the first output of the block): If the block is locked, the value at the first output of the

block is equal to the locked value in the block settings. If the block is not locked, it is equal to the

related physical input’s value.

88 Distributed Control Systems / Programming Manual

LSt (the second output of the block): Indicates the state of the block. It is 1 if the block is

locked(active), 0 otherwise(passive). This output is mapped into Modbus addresses and can be

read and written remotely. The Modbus address of the output is “the block output’s Modbus

address plus 1”.

LVa (the third output of the block): Indicates the value which will be written to the output when

the block is locked. This output is mapped into Modbus addresses and can be read and written

remotely. The Modbus address of the output is “the block output’s Modbus address plus 2”.

As an example; if modbus address of the block is 1006: first output 1006, second output 1007,

third output 1008.

89 Distributed Control Systems / Programming Manual

2.12.5 Sample Applications

In the Mikrodiagram example, the output of the Digital Input block is connected to the Locked

Relay input (LRO).

When Locking is not active in the LRO block; The LRO block "Ana" output will also be 1 when

the DI0 block is 1. When the block DI0 is 0, the LRO block "Ana" output will be 0.

90 Distributed Control Systems / Programming Manual

Locking not active: Since LSt output is 0 in Figure1, the value of the Digital Input is written to the

"Ana" output of the Locked Relay Output block.

Locking active: Locking is active because LSt output 1 is shown in figure2. 0 at the LVa output is

written to the block output.

Locking active: Locking is active because LSt output 1 is shown in figure3. 1 at the LVa output is

written to the block output.

Modbus addresses can be used to change the values of the LSt and LVa outputs of the LRO

block. The Modbus address of the “Ana” output of the LRO block is 1005. (for this example) In

this case the Modbus address of the LSt output is 1006, the Modbus address of the LVa output

is 1007.

3 CALIBRATION BLOCKS

3.1 SLOPE CALIBRATOR

3.1.1 Connections

I1: Signal input

#SCal0: Block

output

Trg: Trigger input

3.1.2 Connections Applications

I1: Signal input

The input of the slope value to be used.

Trg: Trigger input

Trigger input can be left blank.

#SCal0: Block output

It is the output of the calibrated slope input.

91 Distributed Control Systems / Programming Manual

3.1.3 Block Settings

Y: Q1 is the calibrated block output value.

X: I1 is the uncalibrated block input value.

m: The value of m in the equation Y = mX + c is

the non-calibrated I1 input multiplier coefficient.

c: The value “c” in the equation Y = mX + c is the

uncorrelated total coefficient for I1 input.

Trg: Trig Active Work

Not selected; It calibrates the input value and

transfers it to the output in each PLC program

cycle.

When selected; whenever the rising edge comes

to the input of “Trg”, it calibrates the input value

and transfers it to the output.

92 Distributed Control Systems / Programming Manual

3.1.4 Block Explanation

The slope calibrator block means that an analogue value is processed as "Y = mX + c".

The m and c values are coefficient values set from the block options.

The “X“ value is the input (I1) of the block and the value of Y is the output (Q1) of the operation.

3.1.5 Sample Applications

This is an example of connection of slope calibrator. In the example, m is set to 2, c is set to 4.
When the coefficients are replaced in the Y=mX+c line equation, the equation is formed as

Y=2X+4.

The Y value (block output (Q1)) is obtained according to the X value (input I1) defined at the

Slope Calibrator block input. (Y=8*2+4=20)

93 Distributed Control Systems / Programming Manual

3.2 POINT CALIBRATOR

3.2.1 Connections

In: Signal input

#PCa0: Block output

X1: Signal input low limit

Y1: Signal output low limit

X2: Signal input upper limit

Y2: Signal output upper limit

Trg: Trigger input

3.2.2 Connection Explanations

In: Signal input

The signal input to be calibrated.

X1: Signal input low limit

The X value of the first point of calibration.

Y1: Signal output low limit

The Y value of the first point of calibration.

X2: Signal output upper limit

The X value of the second point of calibration.

Y2: Signal output upper limit

The Y value of the second point of calibration.

Trg: Triggering input

It is the block triggering input.

#PCa0: Block output

It is the calibrated block output.

94 Distributed Control Systems / Programming Manual

3.2.3 Block Settings

First point (X): The value of the signal at the input of

In.

First point (Y): The value of the signal at the output

of Out.

Second point (X): The value of the signal at the

input of In.

Second point (Y): The value of the signal at the

output of Out.

On When Trig is Active: Block “Trg” input operation

mode is selected. If selected, block input value is

processed according to “Trg” input and transferred

to the output.

3.2.4 Block Explanations

Especially for analog measurement sensors, there is a linear relationship between the read

analog voltage / current value and the actual physical magnitude. This relationship or

transformation can be defined by at least two points on the line.

In the point calibrator, instead of defining the slope and offset of the correct equation, the

transformation is defined over two sample points.

95 Distributed Control Systems / Programming Manual

3.2.5 Sample Application

The minimum value that can be input to the In input is "X1 = 4" and the maximum value is

entered as "X2 = 20".

The minimum value that can be read from the Out’s output is entered as "Y1 = 0", "Y2 = 100".

Out is "0" when In input is "4", Out is "100" when In input is "20"

96 Distributed Control Systems / Programming Manual

4 DELAY/PULSE TIMERS

4.1 ON DELAY

4.1.1 Connections

Trg: The input of block trigger

#OnD0: Block output

T: The time of on delay

4.1.2 Connection Explanations

Trg: The input of block trigger

It is the block signal input.

T: The time of on delay

This is the input is used to set the delay time if you require to change delay time using the block

input connection

#OnD0: Block output

Block output signal.

97 Distributed Control Systems / Programming Manual

4.1.3 Block Settings

Initial Value (T): The on delay can be set in the block.

Unit: Unit of time is selected. This selection has
following options: milliseconds, seconds, minutes,
hours.

4.1.4 Block Explanation

If TRG input change its state to Logic(1) and stay in this state during the determined delay time

interval, Q1 output signal change its state from logic(0) to logic(1) after end of the delay time

period.

As soon as received Logic(0) signal at Trg input, Q1 output state is changed to Logic(0)

T value can be written in block block settings.

Any type of block signal “word”,”analog” or ”long” can be connected to the T input. T is number

which is between the 0-65535 and be careful about variable type range.

98 Distributed Control Systems / Programming Manual

4.1.4.1 Signal Flow Diagram

4.1.5 Sample Application

When DI0 goes to logic(1) ,after 3 seconds the DQ0 goes to logic(1).When DI0 goes to logic(0),

DQ0 goes to logic(0), immediately.

.

99 Distributed Control Systems / Programming Manual

4.2 OFF DELAY

4.2.1 Connections

Trg: The input of block trigger

#OfD0: Block output

T: The time of off delay

4.2.2 Connection Explanations

Trg: The input of block trigger

It is the block signal input.

T: The time of off delay

This is the input is used to set the delay time if you require to change delay time using the block

input connection

#OfD0: Block output

Block output signal.

100 Distributed Control Systems / Programming Manual

4.2.3 Block Settings

Initial Value (T): The off delay can be set in the block

Unit: Unit of time is selected. This selection has
following options: milliseconds, seconds, minutes,
hours.

4.2.4 Block Explanation

If TRG input change its state to Logic(0) and stay in this state during the determined off delay

time interval, Q1 output signal change its state from logic(1) to logic(0) after end of the delay

time period.

As soon as received Logic(1) signal at Trg input, Q1 output state is changed to Logic(1)

immediately.

T value can be written in block block settings.

Any type of block signal “word”,”analog” or ”long” can be connected to the T input. T is number

which is between the 0-65535 and be careful about variable type range.

101 Distributed Control Systems / Programming Manual

4.2.4.1 Signal Flow Diagram

4.2.5 Sample Application

When DI0 goes to logic(0) ,after 3 seconds the DQ0 goes to logic(0).When DI0 goes to logic(1), DQ0 goes

to logic(1), immediately.

102 Distributed Control Systems / Programming Manual

4.3 ON/OFF DELAY

4.3.1 Connections

Trg: The input of block trigger

#OnfD0: Block output tH: The input of time of on delay

tL: The input of time of off delay

4.3.2 Connection Explanations

Trg: The input of block trigger

It is the block signal input.

tH: The input of time of on delay

This is the input is used to set the ON delay time if you require to change ON delay time using

the block input connection

tL: The input of time of off delay

This is the input is used to set the OFF delay time if you require to change OFF delay time using

the block input connection

#OnfD0: Block output

Block output signal.

103 Distributed Control Systems / Programming Manual

4.3.3 Block Settings

On Time Initial Value (tH): The on delay can be set in
the block

Off Time Initial Value (tL): The of off delay can be set
in the block

Unit of time is selected. This selection has following
options: milliseconds, seconds, minutes, hours.
Unit of ON Delay Time and OFF Delay Time has only this
single selection. Both of them must have same unit.

4.3.4 Block Explanation

 If TRG input change its state to Logic(1) and stay in this state during the determined ON delay

time interval, Q1 output signal change its state from logic(0) to logic(1) after end of the ON delay

time period.

And same way, If TRG input change its state to Logic(0) and stay in this state during the

determined OFF delay time interval, Q1 output signal change its state from logic(1) to logic(0)

after end of the OFF delay time period.

Any changes at the TRG input with shorter duration than user defined delay times does not

change the status of the Q1 block output.

104 Distributed Control Systems / Programming Manual

TON and TOFF values can be written in block block settings or can be applied by related block

inputs. Any type of block signal “word”,”analog” or ”long” can be connected to these inputs. T is

number which is between the 0-65535 and be careful about variable type range.

4.3.4.1 Signal Flow Diagram

105 Distributed Control Systems / Programming Manual

4.3.5 Sample Application

The on / off delay timing scale "seconds" is selected and the tH and tL values are entered from

outside the block.

DQ0 becomes logic (1) 3 seconds after the DI0 logic (1) becomes logic (0).

DQ0 is logic (0) after 10 seconds from the logic (1) to the logic (0).

4.4 RETENTIVE ON DELAY

4.4.1 Connections

Trg: The input of block trigger

#RoD0: Block output Rst: The input of reset

T: The input of on delay time

106 Distributed Control Systems / Programming Manual

4.4.2 Connection Explanations

Trg: The input of block trigger

It is the block signal input.

Rst: The input of reset

Raising edge at RST input signal resets permanent Logic (1) state and re-initiate the block.

T: The input of on delay time

This is the input is used to set the delay time if you require to change delay time using the block

input connection

#RoD0: Block output

Block output signal.

4.4.3 Block Settings

İnitial Value (T): The time of on delay is set in the block

Unit: Unit of time is selected. This selection has
following options: milliseconds, seconds, minutes,
hours.

107 Distributed Control Systems / Programming Manual

4.4.4 Block Explanation

If TRG input change its state to Logic(1) and stay in this state during the determined delay time

interval, Q1 output signal change its state from logic(0) to logic(1) after end of the delay time

period. After Q1 state goes to Logic(1), Q1 output signal keeps its states as long as receiving a

rising edge at RST input.

When a rising edge signal applied to RST input, Q1 Block output goes to Logic(0)

T value can be written in block block settings.

Any type of block signal “word”,”analog” or ”long” can be connected to the T input. T is number

which is between the 0-65535 and be careful about variable type range.

4.4.4.1 Signal Flow Diagram

108 Distributed Control Systems / Programming Manual

4.4.5 Sample Application

Retentive on delay block timing scale "seconds" is selected and T value is entered from outside

the block. After 5 seconds from DI1 logic (1) to logic (0), DQ1 becomes logic (1).

When DQ1 is logic (1), DQ1 maintains the logic (1) position even if DI1 is logic (0).

At the rising edge of the logic (1) signal, called Rst input DI2, DQ1 goes to logic (0)

4.5 TIMER OUTPUT RELAY

4.5.1 Connections

Trg: The input of block trigger

#TOR0: Block output

T: The input of timer parameter

109 Distributed Control Systems / Programming Manual

4.5.2 Connection Explanations

Trg: The input of block trigger

It is the block signal input.

T: The input of timer parameter

This is the input is used to set the delay time if you require to change delay time using the block

input connection

#TOR0: Block output

Block output signal.

4.5.3 Block Settings

Initial Value (T): Timer parameter is set from in the
block

Unit: Unit of time is selected. This selection has
following options: milliseconds, seconds, minutes,
hours.

4.5.4 Block Explanation

When the Trg input change its state from Logic(0) to Logic(1), Q1 output changes its state

immediately to Logic(1). Block keep its Q1 Logic(1) state only user defined duration of time and

after that time period expire, Q1 state goes to Logic(0) state automatically.

As soon as received Logic(0) signal at Trg input, Q1 output state is changed to Logic(0)

T value can be written in block block settings.

110 Distributed Control Systems / Programming Manual

Any type of block signal “word”,”analog” or ”long” can be connected to the T input. T is number

which is between the 0-65535 and be careful about variable type range.

4.5.4.1 Signal Flow Diagram

4.5.5 Sample Application

Timer output relay timer period is choosen as seconds from the blocks, T value is entered from

the out of block.

When DI0 is logic(1), DQ0 will be logic(1).When DI0 is logic(1), after 5 seconds DQ0 will be

logic(0).

111 Distributed Control Systems / Programming Manual

4.6 SYMETRIC PULSE GENERATOR

4.6.1 Connections

Ena: The input of block activation

#SPG0: Block output

T: The input of timer parameter

4.6.2 Connection Explanations

Ena: The input of block activation

It is the input of block activation the symmetric pulse generator.

T: The input of timer parameter

The input of the symmetric pulse generator's time parameter from outside the block.

#SPG0: Block output

When Ena input is logic(1), It is block output which is logic(1-0) as symmetric.

4.6.3 Block Settings

Initial Value (T): Timer parameter is set from in the
block.

Unit: Unit of time is selected. This selection has
following options: milliseconds, seconds, minutes,
hours.

112 Distributed Control Systems / Programming Manual

4.6.4 Block Explanation

When Enb input is logic(1), Q1 block output produces periodic symetric pulses in 2*T time

period as Logic(0) for T period of time and Logic(1) for T period of time.

T value can be written in block block settings.

Any type of block signal “word”,”analog” or ”long” can be connected to the T input. T is number

which is between the 0-65535 and be careful about variable type range.

4.6.4.1 Signal Flow Diagram

4.6.5 Sample Application

When DI0 is logic(1), DQ0 will be 5 seconds logic(0), 5 seconds logic(1) periodically.

113 Distributed Control Systems / Programming Manual

4.7 REAL TIME PULSE GENERATOR

4.7.1 Connections

#RTPG0: Block output

4.7.2 Connection Explanations

#RTPG0: Block output

It is the block output which produce the logic(1) pulse in is described from in the block in the

timer period.

4.7.3 Block Settings

Timing : Pulse period choice can be done from in the
block.
It cannot be choosen from block inputs.

4.7.4 Block Explanation

It periodically generates pulses at the times specified in synchronous with the device's real time

clock.

Different time can be chosen from in the block settings.

114 Distributed Control Systems / Programming Manual

Output of the block is a single cycle time pulse that is generated every specified time events.

4.7.4.1 Signal Flow Diagram

In the example timer parameter is choosen in every minutes in the real time pulse generator

And the device is started at time 15:27:12. So, In real time events of minutes was gained logic

pulse output.

115 Distributed Control Systems / Programming Manual

4.7.5 Sample Application

In the example, the Real-Time Pulse Generator (GZDU) block is programmed to generate a

pulse every 10 seconds. With the GZDU block connected to the “Trg” input of the Word Math

block, the values in the block inputs were collected every 10 seconds and written to the block

output. (On When Trig is Active option must be selected in the Word Math block for the trigger

of the GZDU block to be available for this example.)

116 Distributed Control Systems / Programming Manual

5 MATHEMATICAL OPERATION BLOCKS

5.1 WORD COMPARATOR

5.1.1 Connections

inA: 1. Word input

#WKrş0: Output of the block

inB: 2. Word input

inC: 3. Word input

Ena: Enable Input

5.1.2 Connection Explanations

inA: 1. Word input

Word value to be compared.

inB: 2. Word input

Word value to be compared.

inC: 3. Word input

Word value to be compared.

Ena: Block Enable

Block is activated, when Enb input goes to HIGH

#WKrş0: Output of the block

If the conditions are satisfied, output is “1” or HIGH, otherwise is LOW

117 Distributed Control Systems / Programming Manual

5.1.3 Block Settings

Compare Type: Comparison type is specified here.

INB: Bottom threshold value is entered here in Block
Settings.

INC: Upper threshold value is entered here in Block
Settings.

5.1.4 Block Explanation

It is used for comparing 16-bit WORD numbers. (0-65535) The value at the “inA” input of theblock

is compared to the values at the “inB” and “inC” inputs of the block according to thecompare type

specified in the block settings menu. Block must be activated with sending a HIGH signal to the

“Ena” input of the block.

If the comparing condition is satisfied, output of the block becomes “1” or HIGH, otherwise it is “0”

or LOW.

Desired threshold values for comparing can be selected in Block Settings menu or they can be

adjusted with “inB” and “inC” inputs of the block by connecting a register to the inputs.

With the Word Comparator Block, “greater than”, “smaller than”, “out of range”, “equal to”, “greater

than or equal to”, “smaller than or equal to”, “not equal to” operations can be performed.

For the operations “greater than”, “smaller than”, “greater than or equal to”, “smaller thanor equal

to”, “not equal to”; the value at the “inA” input of the block is compared to the value at the “inB”

input of the block.

118 Distributed Control Systems / Programming Manual

For the operations “in range” and “out of range”; the value at the inA input of the block is compared

to the values at the “inB” and “inC” inputs of the block.

If “in range” or “out of range” operations are going to be used, the value at the “inB” input of the

block should be smaller than the value at the “inC” input of the block. (inB < inC) If the signal at

the “Ena” input of the block goes to “0” from “1” while the output is equal to “1” or output is HIGH,

output of the block will stay the same

Comparison
Type

Used Inputs Enb Explanation

Equal To inA, inB 1 If inA = inB then #WKRŞ0 output is “1”.

Greater Than inA, inB 1 If inA > inB then #WKRŞ0 output is “1”.

Smaller Than inA, inB 1 If inA < inB then #WKRŞ0 output is “1”.

Greater Than
or Equal To

inA, inB
1

If inA ≥ inB then #WKRŞ0 output is “1”.

Smaller Than
or Equal To

inA, inB
1

If inA ≤ inB then #WKRŞ0 output is “1”.

Not Equal To inA, inB 1 If inA ≠ inB then #WKRŞ0 output is “1”.

In Range inA, inB, inC 1 If inB < inA < inC then #WKRŞ0 output is “1”.

Out of Range inA, inB, inC 1 If inB < inC < inA or inA < inB < inC then #WKRŞ0 output is “1”.

- - 0 Previous output preserved; output not updated.



119 Distributed Control Systems / Programming Manual

5.1.5 Sample Application

In this example, comparison type is selected as “In Range”.

The block is enabled with the HIGH signal at the “Enb” input of the block, while the value at the

“inA” input of the block has a value between the value at the “inB” input of the block (bottom

threshold) and the value at the “inC” input of the block(upper threshold), the output is HIGH or “1”,

therefore the Relay Output takes the “1” value.

120 Distributed Control Systems / Programming Manual

5.2 ANALOG COMPARATOR

5.2.1 Connections

inA: 1. Analog Input

#AComp0: Output of the block

inB: 2. Analog Input

inC: 3. Analog Input

Ena: Enable input

5.2.2 Connection Explanations

inA: 1. Analog input

Analog value to be compared.

inB: 2. Analog input

Lower analog threshold value to be compared.

inC: 3. Analog input

Upper analog threshold value to be compared.

Ena: Enable block

Block is activated with this input.

#AComp0: Output of the block

If the conditions are satisfied, output is “1” or HIGH.

121 Distributed Control Systems / Programming Manual

5.2.3 Block Settings

Compare Type: Comparison type is specified here.

INB: Bottom threshold value is entered here in Block
Settings.

INC: Upper threshold value is entered here in Block
Settings.

5.2.4 Block Explanation

It is used for comparing 32-bit floating point numbers. The value at the “inA” input of the block is

compared to the values at the “inB” and “inC” inputs of the block according to the compare type

specified in the block settings menu. Block must be activated with sending a HIGH signal to the

“Ena” input of the block.

If the comparing condition is satisfied, output of the block becomes “1” or HIGH, otherwise it is “0”

or LOW.

Desired threshold values for comparing can be selected in Block Settings menu or they can be

adjusted with “inB” and “inC” inputs of the block by connecting a register to the inputs. With the

Analog Comparator block, “greater than”, “smaller than”, “out of range”, “equal to”, “greater than

or equal to”, “smaller than or equal to”, “not equal to” operations can be performed.

122 Distributed Control Systems / Programming Manual

For the operations “greater than”, “smaller than”, “greater than or equal to”, “smaller than or equal

to”, “not equal to”; the value at the “inA” input of the block is compared to the value at the “inB”

input of the block.

For the operations “in range” and “out of range”; the value at the “inA” input of the block is

compared to the values at the “inB” and “inC” inputs of the block.

If “in range” or “out of range” operations are going to be used, the value at the “inB” input of the

block should be smaller than the value at the “inC” input of the block. (inB < inC)

If the signal at the “Ena” input of the block goes to “0” from “1” while the output is equal to “1” or

output is HIGH, output of the block will stay the same.

Comparison
Type

Used Inputs Ena Explanation

Equal To inA, inB 1 If inA = inB then #AComp0 output is “1”.

Greater Than inA, inB 1 If inA > inB then #AComp0 output is “1”.

Smaller Than inA, inB 1 If inA < inB then #AComp0 output is “1”.

Greater Than
or Equal To

inA, inB 1 If inA ≥ inB then #AComp0 output is “1”.

Smaller Than
or Equal To

inA, inB 1 If inA ≤ inB then #AComp0 output is “1”.

Not Equal To inA, inB 1 If inA ≠ inB then #AComp0 output is “1”.

In Range inA, inB, inC 1 If inB < inA < inC then #AComp0 output is “1”.

Out of Range inA, inB, inC 1 If inB< inC < inA or inA < inB < inC then #AComp0 output is “1”.

- - 0 Previous output preserved; output not updated

123 Distributed Control Systems / Programming Manual

5.2.5 Sample Application

In this example, comparison type is selected as “Out of Range”.

The block is enabled with the HIGH signal at the Enb input of the block, while the value at the

inAinput of the block does not have a value between the value at the inB input of the block (bottom

threshold) and the value at the inC input of the block (upper threshold), the output is HIGH or “1”,

therefore the Relay Output takes the “1” value.

124 Distributed Control Systems / Programming Manual

5.3 LONG COMPARATOR

5.3.1 Connections

InA: 1. Long input

#LCmp0: Output of the block

InB: 2. Long input

InC: 3. Long input

Ena: Enable input

5.3.2 Connection Explanations

InA: 1. Long input

Long value to be compared.

InB: 2. Long input

Bottom long threshold value to be compared.

InC: 3. Long input

Upper long threshold value to be compared.

Ena: Enable input

Block is activated with this input.

#LCmp0: Output of the block

IF the conditions are satisfied, output is “1” or HIGH.

125 Distributed Control Systems / Programming Manual

5.3.3 Block Settings

Compare Type: Comparison type is specified here.

INB: Bottom threshold value is entered here in Block
Settings.

INC: Upper threshold value is entered here in Block
Settings.

5.3.4 Block Explanation

It is used for comparing 32-bit signed numbers. The value at the “inA” input of the block is

compared to the values at the “inB” and “inC” inputs of the block according to the compare type

specified in the block settings menu. Block must be activated with sending a HIGH signal to the

“Ena” input of the block.

If the comparing condition is satisfied, output of the block becomes “1” or HIGH, otherwise it is “0”

or LOW.

Desired threshold values for comparing can be selected in Block Settings menu or they can be

adjusted with “inB” and “inC” inputs of the block by connecting a register to the inputs.

With the Long Comparator block, “greater than”, “smaller than”, “out of range”, “equal to”, “greater

than or equal to”, “smaller than or equal to”, “not equal to” operations can be performed.

126 Distributed Control Systems / Programming Manual

For the operations “greater than”, “smaller than”, “greater than or equal to”, “smaller than or equal

to”, “not equal to”; the value at the “inA” input of the block is compared to the value at the “inB”

input of the block.

For the operations “in range” and “out of range”; the value at the “inA” input of the block is

compared to the values at the “inB” and “inC” inputs of the block.

If “in range” or “out of range” operations are going to be used, the value at the “inB” input of the

block should be smaller than the value at the “inC” input of the block. (inB < inC)

If the signal at the “Ena” input of the block goes to “0” from “1” while the output is equal to “1”or

output is HIGH, output of the block will stay the same.

Comparison
Type

Used Inputs Enb Explanation

Equal To inA, inB 1 If inA = inB then #LCmp0 output is “1”.

Greater Than inA, inB 1 If inA > inB then #LCmp0 output is “1”.

Smaller Than inA, inB 1 If inA < inB then #LCmp0 output is “1”.

Greater Than

or Equal To
inA, inB 1 If inA ≥ inB then #LCmp0 output is “1”.

Smaller Than

or Equal To
inA, inB 1 If inA ≤ inB then #LCmp0 output is “1”.

Not Equal To inA, inB 1 If inA ≠ inB then #LCmp0 output is “1”.

In Range inA, inB, inC 1 If inB < inA < inC then #LCmp0 output is “1”.

Out of Range inA, inB, inC 1 If inB < inC < inA or inA < inB < inC then #LCmp0 output is “1”.

- - 0 Previous output preserved; output not updated



127 Distributed Control Systems / Programming Manual

5.3.5 Sample Application

In this example, comparison type is selected as “Greater”.

The block is enabled with the HIGH signal at the Enb input of the block, while

the value at the inA input of the block has a value equal to the value at the

inB input of the block(lower threshold), so the output is LOW or “0”, therefore

the Relay Output takes the “0” value.

128 Distributed Control Systems / Programming Manual

5.4 WORD MATH

5.4.1 Connections

inA: WORD data input

#WMat0: WORD output inB : WORD data input

Trg: Trigger input

5.4.2 Connection Explanations

inA: WORD input

WORD value to be processed.

inB: WORD input

WORD value to be processed.

Trg: Trigger input

If the “On When Trig is Active” is selected in Block Settings menu, block is activated at each rising

edge detected at the Trg input of the block.

#WMat0: WORD output

16-bit WORD output of the block.

129 Distributed Control Systems / Programming Manual

5.4.3 Block Settings

Math Type: Mathematical operation is specifed
here.

INB: WORD input to be processed.

On When Trig is Active: If selected, block is
activated at each rising edge detected at the Trg
input of the block

Write On Input:

If this option is selected, the value at the inA
input of the block and the value at the inB input
of the block is processed. Result of the operation
is written on the inA input of the block. An WORD
register should be connected to the inA input of
the block. This operation is performed at each
PLC cycle by default. If “On When Trig is Active”
option is selected, this operation is performed at
each rising edge detected on the Trig input of the
block.

5.4.4 Block Explanation

It is used for mathematical operations which result in range 0-65535(16-bit). With Word Math

block “addition”, “subtraction”, “multiplication”, “division”, “logic AND”, “logic OR”, “logic XOR”,

“shift left”, “shift right”, “checkBit”, “LeftShiftCheckFirst”, “RightShiftCheckFirst”,

“LeftShiftCheckLast”, “RightShiftCheckLast”, “absolute value”, “bit compare”, “mod”, “bit replace”,

“get”, “low limit”, “high limit”, “merge A-B” and “set” operations can be performed.

On When Trig is Active: If this option is selected, with every rising edge on the “Trg” input on the

block, specified mathematical operation is performed.

130 Distributed Control Systems / Programming Manual

Write on Input: If this option is selected, the value at the “inA” input of the block and the value at

the “inB” input of the block is processed. Result of the operation is written on the “inA” input of the

block. A WORD register should be connected to the inA input of the block. This operation is

performed at each PLC cycle by default.

If “On When Trig is Active” option is selected, this operation is performed at each rising edge

detected on the “Trg” input of the block.

Math Types and Explanations:

Math Used Inputs Explanation

ADDITION (+) inA, inB

The values at the “inA” and the “inB” input are added and the result is
written to the “#WMat0” output of the block. If “Write on Input” is
selected, the result is written to the “WMat0” output of the block and
the “inA” input.

SUBTRACTION (-) inA, inB

The values at the “inA” and the “inB” input are subtracted and the
result is written to the “#WMat0” output of the block. If “Write on
Input” is selected, the result is written to the “WMat0” output of the
block and the “inA” input.

MULTIPLICATION (*) inA, inB

The values at the “inA” and the “inB” input are multiplied and the result
is written to the “#WMat0” output of the block. If “Write on Input” is
selected, the result is written to the “WMat0” output of the block and
the “inA” input.

DIVISION (/) inA, inB

The value at the “inA” is divided to the value at the “inB” and the result
is written to the “#WMat0” output of the block. If “Write on Input” is
selected, the result is written to the “WMat0” output of the block and
the “inA” input.

AND inA, inB

The values at the “inA” and the “inB” input are bitwise ANDed and the
result is written to the “#WMat0” output of the block. If “Write on
Input” is selected, the result is written to the “WMat0” output of the
block and the “inA” input.

OR inA, inB

The values at the “inA” and the “inB” input are bitwise ORed and the
result is written to the “#WMat0” output of the block. If “Write on
Input” is selected, the result is written to the“WMat0” output of the
block and the “inA” input.

XOR inA, inB

The values at the “inA” and the “inB” input are bitwise XOR and the
result is written to the “#WMat0” output of the block. If “Write on
Input” is selected, the result is written to the “WMat0” output of the
block and the “inA” input.

SHIFT LEFT inA, inB

The bits of the value at the “inA” input are shifted left by the value at
the “inB” and the result is written to the “#WMat0” output of the
block. . If “Write on Input” is selected, the result is written to the
“WMat0” output of the block and the “inA” input. (Ex: inA =1110b,
inB=1 then; #WMat0=1100b)

131 Distributed Control Systems / Programming Manual

SHIFT RIGHT inA, inB

The bits of the value at the “inA” input are shifted right by the value at
the “inB” and the result is written to the “#WMat0” output of the
block. If “Write on Input” is selected, the result is written to the
“WMat0” output of the block and the “inA” input. (Ex: inA=1110b,
inB=1 then; #WMat0=0111b)

CHECK BIT inA, inB

The bit of the value at the “inA” is checked and written to the
“#WMat0” output of the block where n is specified by the “inB” input
of the block. “inB” must be between 0-15. If “Write on Input” is
selected, the result is written to the “WMat0” output of the block and
the “inA” input.

(Ex: inA=1110, inB=2 then; #WMat0=1)

LEFTSHIFTCHECKFIRST inA, inB

0th bit of the value at the “inA” is checked and written to the “#Wat0”
output of the block. The bits of the value at the “inA” is shifted left by
the value at the “inB” input of the block and written to the output
“#WMat0” of the block. If “Write on Input” is selected, the result is
written to the “inA” input.

RIGHTSHIFTCHECKFIRS
T

inA, inB

0th bit of the value at the “inA” is checked and written to the
“#WMat0” output of the block. The bits of the value at the “inA” is
shifted right by the value at the “inB” input of the block and written to
the output “#WMat0” of the block. If “Write on Input” is selected, the
result is written to the “inA” input.

LEFTSHIFTCHECKLAST inA, inB

15th bit of the value at the “inA” is checked and written to the
“#WMat0” output of the block. The bits of the value at the “inA” is
shifted left by the value at the “inB” input of the block and written to
the output “#WMat0” of the block. If “Write on Input” is selected, the
result is written to the “inA” input.

RIGHTSHIFTCHECKLAS
T

inA, inB

15th bit of the value at the “inA” is checked and written to the
“#WMat0” output of the block. The bits of the value at the “inA” is
shifted right by the value at the “inB” input of the block and written to
the output “#WMat0” of the block. If “Write on Input” is selected, the
result is written to the “inA” input.

ABSOLUTE VALUE inA
The absolute value of the value at the “inA” is written to the “#WMat0”
output of the block. If “Write on Input” is selected, the result is written
to the “WMat0” output of the block and the “inA” input.

COMPARE BIT inA, inB

The bits of the values at the “inA” and the “inB” inputs of the block are
compared starting from the left and one more of the value of the first
different bit position is written to the “#WMat0” output of the block. If
all the bits are the same, 0 is written to the “#WMat0” output. If “Write
on Input” is selected, the result is written to the “WMat0” output of the
block and the “inA” input. (Ex: If 0th bit is different, 1 is written to the
#WMat0.)

MOD inA, inB

Modular arithmetic operation. Mod(inB) of the value at the “inA” is
written to the “#WMat0” output of the block. The value at the “inA” is
divided by the value at the “inB” and the remainder is written to the
“#WMat0” output. If “Write on Input” is selected, the result is written
to the “WMat0” output of the block and the “inA” input. (Ex: inA = 253,
inB = 10 then O1 = 4)

132 Distributed Control Systems / Programming Manual

BIT REPLACE inA, inB, INB

It is used to set the index of the “inA” block input value bits in the “INB”
value in the block options section to 0 or 1. The bit value to be written
is determined by the “inB” block input value. The result of the
operation is written to the “#WMat0” output. If “Write on Input” is
selected, the result is written to the “WMat0” output of the block and
the “inA” input.

GET inB

It is used for reading a Word Register block’s or a block’s value present
in the logic project. The block number to be read is specified with “inB”
input of the block. Read value is written to output “#WMat0”. If “Write
on Input” is selected, the result is written to the “WMat0” output of the
block and the “inA” input. It is also used for some special commands.
These commands can be seen in diagram below.

LOW LIMIT inA, inB

Specifies the minimum value that “#WMat0” output can take. Desired
minimum value is written to the “inA” input. If “inB” has a greater value
than “inA” input, the value at the “inB” is written to the “#WMat0”
output. Otherwise, the value at the “inA” is written to the “#WMat0”
output. “Write on Input” is selected, the result is written to the
“WMat0” output of the block and the “inA” input. (Ex: inA = 10, inB = 8
then; #WMat0 = 10)

HIGH LIMIT inA, inB

Specifies the maximum value that “#WMat0” output can take. Desired
maximum value is written to the “inA” input. If “inB” has a smaller
value than “inA” input, the value at the “inB” is written to the
“#WMat0” output. Otherwise, the value at the “inA” is written to the
“#WMat0” output. “Write on Input” is selected, the result is written to
the “WMat0” output of the block and the “inA” input. (Ex: inA = 10, inB
= 12 then; #WMat = 10)

MERGE A-B inA, inB

The value at the “inB” is shifted left by 8 bits and added to the value at
the “inA”. “Write on Input” is selected, the result is written to the
“WMat0” output of the block and the “inA” input. (Two of the 8 bit
merge blocks can be used for 16 bit merging.)

SET inA, inB

It is used for write to a Word Register block or to a block present in the
logic project. “inA” block input value is the value to be written. The
block number to be written is specified with inB input of the block. The
“inA” block input value is written both to the “#WMat0” block output
and to the block to be written. (Ex: inA = 10, inB = 3001 then; 10 is
written to the block which has block number 3001.)

133 Distributed Control Systems / Programming Manual

5.4.4.1 GET Operation Special Commands

When performing GET operation, if some special values are entered to the “inB” input of the block

then some special operations are performed by the block.

Diagram below shows the commands and the related operations to the commands.

inB Value Function Explanation

20000 Resets the device using software.

31000 Sends the value at the “inA”as DTMF code. (Only available for GSM devices.)

5.4.5 Sample Application

Addition examples:

In sum_1 example, the values at the “inA” and “inB” input of the block are added and the result is

written to the “O1” output of the block.

In sum_2 example, “On When Trig is Active” and “Write on Input” is selected. Hence, the lues at

the “inA” and the “inB” are added and the result is written to the “inA” input at each detected rising

edge on the “Trg” input of the block.

134 Distributed Control Systems / Programming Manual

Subtraction examples:

In sub_1 example, the value at the “inA” of the block is subtracted from the “inB” input of the block

and the result is written to the “O1” output of the block.

In sub_2 example, “On When Trig is Active” and “Write on Input” is selected. Hence, the value at

the “inA” of the block is subtracted from the “inB” input of the block and the result is written to the

“inA” input at each detected rising edge on the “Trg” input of the block.

135 Distributed Control Systems / Programming Manual

Multiplication examples;

In Multiplication1 example, the value at the “inA” input of the block is multiplied by the “inB” input

of the block and the result is written to the “O1” output of the block.

In Multiplication2 example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

value at the “inA” of the block is multiplied by the “inB” input of the block and the result is written

to the “inA” input at each detected rising edge on the “Trg” input of the block.

136 Distributed Control Systems / Programming Manual

Division examples;

In Division1 example, the value at the “inA” input of the block is divided by the “inB” input of the

block and the result is written to the “O1” output of the block.

In Division2 example, “On When Trig is Active” and “Write on Input” is selected. Hence, the value

at the “inA” of the block is divided by the “inB” input of the block and the result is written to the

“inA” input at each detected rising edge on the “Trg” input of the block.

137 Distributed Control Systems / Programming Manual

AND and OR examples:

Corresponding binary value of the decimal value at the inA: (10)10=(01010)2

Corresponding binary value of the decimal value at the inB: (24)10= (11000)2

The result of bitwise AND operation between inA and inB is: (8)10=(01000)2

The result of bitwise OR operation between inA and inB is: (26)10=(11010)2

138 Distributed Control Systems / Programming Manual

Exclusive OR(XOR) and Mod examples;

Corresponding binary value of the decimal value at the inA: (13)10=(01101)2

Corresponding binary value of the decimal value at the inB: (20)10= (10100)2

The result of bitwise XOR operation between inA and inB is: (25)10=(11001)2

In Mod example, the value at the “inA” is divided by the value at “inB” and the remainder of the

operation is written to the “O1” output of the block.

139 Distributed Control Systems / Programming Manual

Shift Left and Shift Right examples:

Corresponding binary value of the decimal value at the inA: (8)10=(01000)2

The value at the “inB” input specifies the number of bits which “inA” is going to be shifted by.

After the shifting operation, result is written to the “O1” output of the block.

Shift Left: When 8 is shifted left by 1: (16)10=(10000)2 is obtained.

Shift Right: When 8 is shifted right by 1: (4)10=(00100)2 is obtained.

140 Distributed Control Systems / Programming Manual

Check Bit examples;

Corresponding binary value of the decimal value at the inA: (21)10=(10101)2

The value at the “inB” input specifies the index of the bit which is going to be checked. After the

checking process, checked bit is written to the “O1” output of the block.

In Check Bit 1 example, the value of the checked bit is (10101)2 :1.

In Check Bit 2 example, the value of the checked bit is (10101)2 :0.

141 Distributed Control Systems / Programming Manual

Absolute value examples:

Distance of the value at the inA to the origin is written to the O1 output.

In “AbsoluteValue1” example, distance of 5 to the origin is 5.

In “AbsoluteValue2” example, distance of -5’ to the origin is 5.

142 Distributed Control Systems / Programming Manual

Low Limit examples:

Low limit value is connected to the “inA” input of the block using a WORD register.

In Low Limit 1 example, low limit is not activated. Since the value at the “inB” input is greater than

the low limit, the value at the “inB” is written to the “O1” output of the block.

In Low Limit 2 example, low limit is activated. Since the value at the “inB” input is smaller than the

low limit, the value at the “inA” is written to the “O1” output of the block.

143 Distributed Control Systems / Programming Manual

High limit examples:

High limit value is connected to the “inA” input of the block using a WORD register.

In High Limit 1 example, high limit is not activated. Since the value at the “inB” input is smaller

than the low limit, the value at the “inB” is written to the “O1” output of the block.

In High Limit 2 example, high limit is activated. Since the value at the “inB” input is greater than

the low limit, the value at the “inA” is written to the “O1” output of the block.

144 Distributed Control Systems / Programming Manual

Merge A-B example:

An 8 bit merge block is connected to “inA” input of the block and an other 8 bit merge block is

connected to “inB” input of the block. The value at the “inB” block is shifted left by 8 bits and added

to the value at the “inA” input of the block. That way, a merge 16 bit merge block is designed with

0-8 bits are connected to “inA” input and 9-15 bits are connected to “inB” input.

145 Distributed Control Systems / Programming Manual

Set example;

The value to be set is connected to the “inA” input of the block.

Number of the target block is connected to the “inB” input of the block.

The value at the “inA” input, 55, is set to the block with number 4010.

146 Distributed Control Systems / Programming Manual

5.5 ANALOG MATH

5.5.1 Connections

inA: Analog data input

#AMat0: Output of the Block inB : Analog data input

Trg: Trigger input

5.5.2 Connection Explanations

inA: Analog data input

Analog value to be processed.

inB: Analog data input

Analog value to be processed.

Trg: Trigger input

If the “On When Trig is Active” is selected in Block Settings menu, block is activated at each rising

edge detected at the Trg input of the block.

#AMat0: Block of the Output

32-bit floating point output of the block.

147 Distributed Control Systems / Programming Manual

5.5.3 Block Settings

Analog Math Type: Mathematical operation is
specifed here

INB: Analog input to be processed.

On When Trig is Active: If selected, block is
activated at each rising edge detected at the Trg
input of the block

Write On Input: If this option is selected, the
value at the inA input of the block and the value
at the inB input of the block is processed. Result
of the operation is written on the inA input of the
block. An Analog register should be connected to
the inA input of the block. This operation is
performed at each PLC cycle by default. If “On
When Trig is Active” option is selected, this
operation is performed at each rising edge
detected on the Trig input of the block.

5.5.4 Block Explanation

It is used for IEE754 floating point number mathematical operations. With Analog Math block,

“addition”, “subtraction”, “multiplication”, “division”, “absolute value”, “square root”, “sin”, “cos”,

“tan”, “asin”, “acos”, “atan1”, “atan2”, “get”, “low limit”, “high limit”, “set” and “Word to Signed”

operations can be performed.

On When Trig is Active: If this option is selected, with every rising edge on the Trig input

of the block, specified mathematical operation is performed.

Write on Input: If this option is selected, the value at the “inA” input of the block and the value at the

“inB” input of the block is processed. Result of the operation is written on the “inA” input of the block.

An Analog Register block should be connected to the “inA” input of the block. This operation is

performed at each PLC cycle by default. If “On When Trig is Active” option is selected, this operation is

performed at each rising edge detected on the “Trg” input of the block.

148 Distributed Control Systems / Programming Manual

Math Types and Explanations:

Math Used Inputs Explanation

ADDITION (+) inA, inB

The values at the “inA” and the “inB” input are added and the result is
written to the “#AMat0” output of the block. If “Write on Input” is
selected, the result is written to the “#AMat0” output of the block and
the “inA” input.

SUBTRACTION (-) inA, inB

The values at the inA and the inB input are subtracted and the result is
written to the “#AMat0” output of the block. If “Write on Input” is
selected, the result is written to the “#AMat0” output of the block and
the “inA” input.

MULTIPLICATION (*) inA, inB

The value at the “inA” input of the block is multiplied by the “inB” input
of the block and the result is written to the “#AMat0” output of the
block. If “Write on Input” is selected, the result is written to the
“#AMat0” output of the block and the inA input.

DIVISION (/) inA, inB

The value at the “inA” input of the block is divided by the “inB” input of
the block and the result is written to the “#AMat0” output of the block.
If “Write on Input” is selected, the result is written to the “#AMat0”
output of the block and the “inA” input.

ABSOLUTE VALUE inA

The absolute value of the value at the “inA” is written to the “#AMat0”
output of the block. If “Write on Input” is selected, the result is written
to the “#AMat0” output of the block and the “inA” input. (Ex: inA=-15
then; #AMat0=15)

SQUARE ROOT inA

Takes the square root of the value at the “inA” input and the result is
written to the “#AMat0” output of the block. If “Write on Input” is
selected, the result is written to the “#AMat0” output of the block and
the “inA” input. (Ex: inA=81 then; O1=9)

SIN inA
Trigonometric sine function Sin(inA). The result is written to the
"#AIsm0" block output. If “Write on Input” is selected, the result is
written to the “#AMat0” output of the block and the “inA” input.

COS inA
Trigonometric cosine function Cos(inA). The result is written to the
"#AIsm0" block output. If “Write on Input” is selected, the result is
written to the “#AMat0” output of the block and the “inA” input.

TAN inA
Trigonometric tangent function Tan(inA). The result is written to the
"#AIsm0" block output. If “Write on Input” is selected, the result is
written to the “#AMat0” output of the block and the “inA” input.

ASIN inA
Trigonometric arcsine function Asin(inA). The result is written to the
"#AIsm0" block output. If “Write on Input” is selected, the result is
written to the “#AMat0” output of the block and the “inA” input.

ACOS inA
Trigonometric arccosine function Acos(inA). The result is written to the
"#AIsm0" block output. If “Write on Input” is selected, the result is
written to the “#AMat0” output of the block and the “inA” input.

ATAN1 inA
Trigonometric arctangent function Atan(inA). The result is written to
the "#AIsm0" block output. If “Write on Input” is selected, the result is
written to the “#AMat0” output of the block and the “inA” input.

ATAN2 inA, inB Trigonometric arctangent (inB/ inA) function Atan2(inA, inB). The result
is written to the "#AIsm0" block output. If “Write on Input” is selected,

149 Distributed Control Systems / Programming Manual

the result is written to the “#AMat0” output of the block and the “inA”
input.

GET inA, inB

It is used for reading a Word Register block’s or a block’s value present
in the logic project. The block number to be read is specified with “inB”
input of the block. The read value is written to the "#AIsm0" block
output. If “Write on Input” is selected, the result is written to the
“#AMat0” output of the block and the “inA” input.

It is also used for some special commands. These commands can be
seen in diagram below.

LOW LIMIT inA, inB

Specifies the minimum value that “#AMat0” output can take. Desired
minimum value is written to the “inA” input. If “inB” has a greater value
than “inA” input, the value at the “inB” is written to the “#AMat0”
output. Otherwise, the value at the “inA” is written to the “#AMat0”
output. If “Write on Input” is selected, the result is written to the
“#AMat0” output of the block and the “inA” input. (Ex: inA = 10, inB = 8
then; O1 = 10)

HIGH LIMIT inA, inB

Specifies the maximum value that “#AMat0” output can take. Desired
maximum value is written to the “inA” input. If “inB” has a smaller
value than “inA” input, the value at the “inB” is written to the
“#AMat0” output. Otherwise, the value at the “inA” is written to the
“#AMat0” output. If “Write on Input” is selected, the result is written to
the “#AMat0” output of the block and the “inA” input. (Ex: inA = 10, inB
= 12 then; O1 = 10)

SET inA, inB

It is used for write to a Word Register block’s or to a block present in
the logic project. “inA” block input value is the value to be written. The
block number to be written is specified with inB input of the block. The
“inA” block input value is written both to the “#AMat0” block output
and to the block to be written. (Ex: inA = 10, inB = 3001 then; 10 is
written to the block which has block number 3001.)

WORD TO SIGNED inA

A Word Register block containing 16-bit unsigned number is connected
to “inA” input of the block and converted to the 16-bit signed number
and written to the “#AMat0” output of the block. (Ex: inA=65535 then;
#AMat0=-1, inA=65534 then; #AMat0=-2 inA=32768 then; #AMat0=-
32768, inA=32769 then; #AMat0=-32767, inA=1 then; #AMat0=1,
inA=32766 then; #AMat0=32766, inA=32767 then; #AMat0=32767))

150 Distributed Control Systems / Programming Manual

5.5.4.1 GET Operation Special Commands

When performing GET operation, if some special values are entered to the “inB” input of the block

then some special operations are performed by the block.

Diagram below shows the commands and the related operations to the commands

inB Value Function Explanation

10000 Reads the temperature value from the integrated temperature sensor SHT21.
Aavilable only for devices that have the integrated temperature sensor.

10001 Reads the humidity value from the integrated temperature sensor SHT21. Aavilable
only for devices that have the integrated humidity sensor.

20000 Reads the RMC geographic latitude data from GPS.

20001 Reads the RMC geographic longitude data from GPS.

20002 Reads the geographic speed data from GPS.(km/h)

20003 Reads the GLL geographic latitude data from GPS.

20004 Reads the GLL geographic longitude data from GPS.

20005 Reads the HEH degree data from GPS.

30001 Real time clock, VBAT – Battery voltage in Volts

151 Distributed Control Systems / Programming Manual

5.5.5 Sample Application

Addition examples:

 In “Addition1” example, the values at the inA and inB input of the block are added and the result

is written to the O1 output of the block.

In “Addition2” example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

values at the inA and the inB are added and the result is written to the inA input at each detected

rising edge on the Trig input of the block.

152 Distributed Control Systems / Programming Manual

Subtraction examples:

In “Subtraction1” example, the value at the inA of the block is subtracted from the inB input of the

block and the result is written to the O1 output of the block.

In “Subtraction2” example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

value at the inA of the block is subtracted from the inB input of the block and the result is written

to the inA input at each detected rising edge on the Trig input of the block.

153 Distributed Control Systems / Programming Manual

Multiplication examples:

In “Multiplication1” example, the value at the inA input of the block is multiplied by the inB input of

the block and the result is written to the O1 output of the block.

In “Multiplication2” example, “On When Trig is Active” and “Write on Input” is selected. Hence,

the value at the inA of the block is multiplied by the inB input of the block and the result is written

to the inA input at each detected rising edge on the Trig input of the block.

154 Distributed Control Systems / Programming Manual

Division examples:

In “Division1” example, the value at the inA input of the block is divided by the inB input of the

block and the result is written to the O1 output of the block.

In “Division2” example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

value at the inA of the block is divided by the inB input of the block and the result is written to the

inA input at each detected rising edge on the Trig input of the block.

155 Distributed Control Systems / Programming Manual

Absolute value examples:

Distance of the value at the inA to the origin is written to the O1 output.

In “AbsoluteValue1” example, distance of 25.6 to the origin is 25.6.

In “AbsoluteValue2” example, distance of -32.6 to the origin is 32.6.

156 Distributed Control Systems / Programming Manual

Low limit examples:

Low limit value is connected to the inA input of the block using a WORD register.

In “Low Limit 1” example, low limit is not activated. Since the value at the inB input is greater than

the low limit, the value at the inB is written to the O1 output of the block.

In “Low Limit 2” example, low limit is activated. Since the value at the inB input is smaller than the

low limit, the value at the inA is written to the O1 output of the block.

157 Distributed Control Systems / Programming Manual

High limit examples:

High limit value is connected to the inA input of the block using a WORD register.

In “High Limit 1” example, high limit is not activated. Since the value at the inB input is smaller

than the low limit, the value at the inB is written to the O1 output of the block.

In “High Limit 2” example, high limit is activated. Since the value at the inB input is greater than

the low limit, the value at the inA is written to the O1 output of the block.

158 Distributed Control Systems / Programming Manual

Set example:

The value to be set is connected to the inA input of the block.

Number of the target block is connected to the inB input of the block.

The value at the inA input, -123.5, is set to the block with number 6020.

159 Distributed Control Systems / Programming Manual

5.6 LONG MATH

5.6.1 Connections

InA: Long data input

#LMat0: Output of the Block InB : Long data input

Trg: Trigger input

5.6.2 Connection Explanations

InA: Long data input

Long value to be processed.

InB : Long data input

Long value to be processed.

Trg: Trigger input

If the “On When Trig is Active” is selected in Block Settings menu, block is activated at each

rising edge detected at the Trg input of the block.

#LMat0: Output of the Block

32-bit signed output of the block.

160 Distributed Control Systems / Programming Manual

5.6.3 Block Settings

Math Type: Mathematical operation is specifed
here

INB: Second long input to be processed can be
entered in Block Settings menu.

On When Trig is Active: If selected, block is
activated at each rising edge detected at the Trg
input of the block

Write On Input: If this option is selected, the
value at the inA input of the block and the value
at the inB input of the block is processed. Result
of the operation is written on the inA input of the
block. A long register should be connected to the
inA input of the block. This operation is
performed at each PLC cycle by default. If “On
When Trig is Active” option is selected, this
operation is performed at each rising edge
detected on the Trig input of the block.

5.6.4 Block Explanation

It is used for mathematical operations which result in 32-bit signed integers. With Long Math block

“addition”, “subtraction”, “multiplication”, “division”, “logic AND”, “logic OR”, “logic XOR”, “shift left”,

“shift right”, “checkBit”, “LeftShiftCheckFirst”, “RightShiftCheckFirst”, “LeftShiftCheckLast”,

“RightShiftCheckLast”, “absolute value”, “bit compare”, “mod”, “bit replace”, “get”, “low limit”, “high

limit”, “merge A-B”, “WORD to signed” and “set” operations can be performed.

On When Trig is Active: If this option is selected, with every rising edge on the “Trg” input of the

block, specified mathematical operation is performed.

161 Distributed Control Systems / Programming Manual

Write on Input: If this option is selected, the value at the “inA” input of the block and the value at

the “inB” input of the block is processed. Result of the operation is written on the “inA” input of the

block. An Analog Register block should be connected to the “inA” input of the block. This operation

is performed at each PLC cycle by default. If “On When Trig is Active” option is selected, this

operation is performed at each rising edge detected on the “Trg” input of the block.

Math Types and Explanations:

Math Used Inputs Explanation

ADDITION (+) InA, InB

The values at the inA and the inB input are added and the result is

written to the OUT output of the block. If “Write on Input” is

selected, the result is written to the inA input.

SUBTRACTION (-) InA, InB

The values at the inA and the inB input are subtracted and the

result is written to the OUT output of the block. If “Write on Input” is

selected, the result is written to the inA input.

MULTIPLICATION(*

)
InA, InB

The value at the inA input of the block is multiplied by the inB input of the

block and the result is written to the OUT output of the block. If “Write on

Input” is selected, the result is written to the inA input.

DIVISION(/) InA, InB

The value at the inA input of the block is divided by the inB input of the

block and the result is written to the OUT output of the block. If “Write on

Input” is selected, the result is written to the inA input.

AND InA, InB

The values at the inA and the inB input are bitwise ANDed and the

result is written to the OUT output of the block. If “Write on Input” is

selected, the result is written to the inA input. (Ex: InA=0110, InB=1011

then Out=0010)

OR InA, InB

The values at the inA and the inB input are bitwise ORed and the

result is written to the OUT output of the block. If “Write on Input” is

selected, the result is written to the inA input. (Ex: InA=0110, InB=0101

then; Out=0111)

XOR InA, InB

The values at the inA and the inB input are bitwise XORed and the

result is written to the OUT output of the block. If “Write on Input” is

selected, the result is written to the inA input. (Ex: InA=0101, InB=1001

then; Out=1100)

SHIFT LEFT InA, InB
The bits of the value at the inA input are shifted left by the value at

the inB and the result is written to the OUT output of the block. . If

162 Distributed Control Systems / Programming Manual

“Write on Input” is selected, the result is written to the inA input.

(Ex: inA =1110b, inB=1 then; OUT=1100b)

SHIFT RIGHT InA, InB

The bits of the value at the inA input are shifted right by the value

at the inB and the result is written to the OUT output of the block. .

If “Write on Input” is selected, the result is written to the inA input.

(Ex: inA=1110b, inB=1 then; OUT=0111b)

CHECK BIT InA, InB

The n’th bit of the value at the inA is checked and written to the OUT

output of the block where n is specified by the inB input of the

block. inB must be between 0-15. (Ex: inA=1110, inB=2 then; OUT=1)

LEFTSHIFTCHECKFI

RST
InA, InB

0th bit of the value at the inA is checked and written to the OUT

output of the block. The bits of the value at the inA is shifted left

by the value at the inB input of the block and written to the output

OUT of the block. If “Write on Input” is selected, the result is written to

the inA input.

RIGHTSHIFTCHECK

FIRST
InA, InB

0th bit of the value at the inA is checked and written to the OUT

output of the block. The bits of the value at the inA is shifted right

by the value at the inB input of the block and written to the output

OUT of the block. If “Write on Input” is selected, the result is written to

the inA input.

LEFTSHIFTCHECKL

AST
InA, InB

15th bit of the value at the inA is checked and written to the OUT

output of the block. The bits of the value at the inA is shifted left

by the value at the inB input of the block and written to the outputOUT of

the block. If “Write on Input” is selected, the result is written to the inA

input.

RIGHTSHIFTCHECK

LAST
InA, InB

15th bit of the value at the inA is checked and written to the OUT

output of the block. The bits of the value at the inA is shifted right

by the value at the inB input of the block and written to the output

OUT of the block. If “Write on Input” is selected, the result is written to

the inA input.

ABSOLUTE VALUE InA
The absolute value of the value at the inA is written to the OUT

output of the block. (Ex: InA=-5 then; Out=5 or InA=22 then; Out=22)

COMPARE BIT
The bits of the values at the inA and the inB inputs of the block are

compared starting from the left and the first different bits position

163 Distributed Control Systems / Programming Manual

is written to the OUT output of the block. If all the bits are the same, 0 is

written to the OUT output. One more of the value of the

different bit’s index is written to the OUT. (Ex: If 0th bit is different, 1 is

written to the OUT.)

MOD InA, InB

Modular arithmetic operation. Mod(inB) of the value at the inA is

written to the OUT output of the block.The value at the inA is

divided by the value at the inB and the remainder is written to the

OUT output.(Ex: inA = 253, inB = 10 then OUT = 4)

BIT REPLACE
It is used for replacing a bit of the value of the inA with 0 or 1. The

value at the inB specifies the target bit

GET InA, InB

It is used for reading a WORD register’s or a block’s value present

in the logic project. The block to be read is specified with inB input

of the block. It is also used for some special commands. These

commands can be seen in diagram below.

LOW LIMIT InA, InB

Specifies the minimum value that OUT output can take. Desired

minimum value is written to the inA input. If inB has a greater

value than inA input, the value at the inB is written to the OUT

output. Otherwise, the value at the inA is written to the OUT

output.(Ex: inA = 10, inB = 8 then; OUT = 10)

HIGH LIMIT InA, InB

Specifies the maximum value that OUT output can take. Desired

maximum value is written to the inA input. If inB has a smaller

value than inA input, the value at the inB is written to the OUT

output. Otherwise, the value at the inA is written to the OUT

output.(Ex: inA = 10, inB = 12 then; OUT = 10)

MERGE A-B InA, InB
The value at the inB is shifted left by 8bits and added to the value

at the inA.

SET InA, InB

It is used for write to a WORD register or to a block present in the

logic project. The block to be written is specified with inB input of

the block.(Ex: inA = 10, inB = 3001 then; 10 is written to the block

which has block number 3001.)

WORD TO SIGNED

A WORD register containing 16-bit unsigned number is connected to inA

input of the block and converted to the 16-bit signed number and written

to the OUT output of the block. (Ex: inA=65535 then; OUT=-1, inA=65534

then; OUT=-2)

164 Distributed Control Systems / Programming Manual

5.6.4.1 GET Operation Special Commands

When performing GET operation, if some special values are entered to the inB input of the block

then some special operations are performed by the block. Diagram below shows the commands

and the related operations to the commands.

inB Value Function Explanation

10000 Reads the temperature value from the integrated temperature sensor SHT21.
Aavilable only for devices that have the integrated temperature sensor.

10001 Reads the humidity value from the integrated temperature sensor SHT21. Aavilable
only for devices that have the integrated humidity sensor.

20000 Reads the RMC geographic latitude data from GPS.

20001 Reads the RMC geographic longitude data from GPS.

20002 Reads the geographic speed data from GPS.(km/h)

20003 Reads the GLL geographic latitude data from GPS.

20004 Reads the GLL geographic longitude data from GPS.

20005 Reads the HEH degree data from GPS.

30001 Real time clock, VBAT – Battery voltage in Volts

165 Distributed Control Systems / Programming Manual

5.6.5 Sample Applications

Addition examples:

In “Addition1” example, the values at the inA and inB input of the block are added and the result

is written to the OUT output of the block.

In “Addition2” example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

values at the inA and the inB are added and the result is written to the inA input at each detected

rising edge on the Trig input of the block.

166 Distributed Control Systems / Programming Manual

Subtraction examples:

In “Subtraction1” example, the value at the inA of the block is subtracted from the inB input of the

block and the result is written to the OUT output of the block.

In “Subtraction2” example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

value at the inA of the block is subtracted from the inB input of the block and the result is written

to the inA input at each detected rising edge on the Trig input of the block.

167 Distributed Control Systems / Programming Manual

Multiplication examples:

In “Multiplication1” example, the value at the inA input of the block is multiplied by the inB input of

the block and the result is written to the OUT output of the block.

In “Multiplication2” example, “On When Trig is Active” and “Write on Input” is selected. Hence,

the value at the inA of the block is multiplied by the inB input of the block and the result is written

to the inA input at each detected rising edge on the Trig input of the block.

168 Distributed Control Systems / Programming Manual

Division examples:

In “Division1” example, the value at the inA input of the block is divided by the inB input of the

block and the result is written to the OUT output of the block.

In “Division2” example, “On When Trig is Active” and “Write on Input” is selected. Hence, the

value at the inA of the block is divided by the inB input of the block and the result is written to the

inA input at each detected rising edge on the Trig input of the block.

169 Distributed Control Systems / Programming Manual

AND and OR examples:

Corresponding binary value of the decimal value at the inA: ; (21)10=(10101)2

Corresponding binary value of the decimal value at the inB: (11)10= (01011)2

The result of bitwise AND operation between inA and inB is: (1)10=(00001)2

The result of bitwise OR operation between inA and inB is: (31)10=(11111)2

170 Distributed Control Systems / Programming Manual

Exclusive OR(XOR) and MOD example:

Corresponding binary value of the decimal value at the inA: (27)10=(11011)2

Corresponding binary value of the decimal value at the inB: (20)10= (01011)2

The result of bitwise XOR operation between inA and inB is: (16)10=(10000)2

In Mod example, the value at the inA is divided by the value at inB and the remainder of the

operation is written to the OUT output of the block.

171 Distributed Control Systems / Programming Manual

Shift Left and Shift Right examples:

InA’daki değerin bitlerine ayrılmış hali; (4)10=(00100)2’dir.

InB’deki değer kaç bit kaydırma yapılacağını gösterir.

Out çıkışına InA’daki değerin bitleri kaydırıldıktan sonraki long değeri yazılır.

Sola Kaydır; 4 değeri 2 bit sola kaydırıldığında; (16)10=(10000)2 değeri elde edilir.

Sağa Kaydır; 4 değeri 2 bit sağa kaydırıldığında; (1)10=(00001)2 değeri elde edilir.

Corresponding binary value of the decimal value at the inA: ; (4)10=(00100)2

The value at the inB input specifies the number of bits which inA is going to be shifted by.

After the shifting operation, result is written to the OUT output of the block.

Shift Left: When 8 is shifted left by 1: (16)10=(10000)2 is obtained.

Shift Right: When 8 is shifted right by 1: (1)10=(00001)2 is obtained.

172 Distributed Control Systems / Programming Manual

Check Bit examples:

Corresponding binary value of the decimal value at the inA: (21)10=(10101)2

The value at the inB input specifies the index of the bit which is going to be checked. After the

checking process, checked bit is written to the OUT output of the block.

In “Check Bit 1” example, the value of the checked bit is (10101)2 =1

In “Check Bit 2” example, the value of the checked bit is (10101)2=0

173 Distributed Control Systems / Programming Manual

Absolute Value examples:

Distance of the value at the inA to the origin is written to the OUT output.

In “AbsoluteValue1” example, distance of 445 to the origin is 445.

In “AbsoluteValue2” example, distance of -412 to the origin is 412.

174 Distributed Control Systems / Programming Manual

Low Limit examples:

Low limit value is connected to the inA input of the block using a long register.

In “Low Limit 1” example, low limit is not activated. Since the value at the inB input is greater than

the low limit, the value at the inB is written to the OUT output of the block.

In “Low Limit 2” example, low limit is activated. Since the value at the inB input is smaller than the

low limit, the value at the inA is written to the OUT output of the block.

175 Distributed Control Systems / Programming Manual

High Limit examples:

High limit value is connected to the inA input of the block using a WORD register.

In “High Limit 1” example, high limit is not activated. Since the value at the inB input is smaller

than the low limit, the value at the inB is written to the OUT output of the block.

In “High Limit 2” example, high limit is activated. Since the value at the inB input is greater than

the low limit, the value at the inA is written to the OUT output of the block.

176 Distributed Control Systems / Programming Manual

Merge A-B example:

The value at the inB block is shifted left by 8bits and added to the value at the inA input of the

block.The result is written to the Out output of the block. Two 16-bit word register’s bits are

concetanated with Long Math block.

Set example:

The value to be set is connected to the inA input of the block.

Number of the target block is connected to the inB input of the block.

177 Distributed Control Systems / Programming Manual

The value at the inA input, 545, is set to the block with number 6003.

6 COUNTER BLOCKS

6.1 UP/DOWN COUNTER 1

6.1.1 Connections

Trg: Trigger input

#U/D10: Block output Res: Reset input

Dir: Direction input

6.1.2 Connection Explanations

Trg: Trigger input

It is the trigger input.

Res: Reset input

The counter’s reset input.

Dir: Direction input

Counter direction binary input.

#U/D10: Block output

Counter value output.

178 Distributed Control Systems / Programming Manual

6.1.3 Block Settings

Up: If selected; Counter increases in the positive (+)
direction. If it is desired to select from outside the
block, Logic high(1) should be applied to "Dir" input.

Down: If selected; Counter increases in the negative
(-) direction. If you want to select from outside the
block, logic low(0) should be applied to "Dir" input.

Retentive (Persistence): If selected; the counter
keeps the last value when the power of the device is
interrupted or reset.

6.1.4 Block Explanation

It is used to increment the counting process from any value in positive (+) direction one by one,

or to reduce a value in negative (-) direction one by one.

If the counter direction is to be determined from outside the block;

"Dir" input of the counter is logic high(1) => the counter has positive (+) direction

"Dir" input of the counter is logic low(0) => the counter has positive (-) direction

The counter Increases/decreases value by 1 on the rising edge of the logic high(1) signal

applied to “Trg” input.

The reference point from which the counting process starts can be specified by overwriting the

block register.

It can count 32 bits signed integers.

179 Distributed Control Systems / Programming Manual

6.1.5 Sample Application

In the example, on the rising edge of each logic high(1) signal coming from DI0; If the DI2 input

is logic high(1), it performs counting upwards, else if the DI2 input is logic low(0), it performs

counting downwards.

Logic high(1) from DI1 input is used for resetting the counter.

180 Distributed Control Systems / Programming Manual

6.2 UP/DOWN COUNTER 2

6.2.1 Connections

Up: Up input

#U/D20: Block output Dow: Down input

Res: Reset input

6.2.2 Connection Explanations

Up: Up input

The counter value increases by 1, when “Up” input triggered.

Dow: Down input

The counter value decreases by 1, when “Dow” input triggered.

Res: Reset input

It is counter’s reset input.

#U/D20: Block output

It is counter’s value output.

181 Distributed Control Systems / Programming Manual

6.2.3 Block Settings

Retentive (Persistence): If selected; the counter keeps the
last value when the power of the device is interrupted or
reset.

6.2.4 Block Explanation

It is used when positive (+) direction and negative (-) direction counting is done from two

different inputs on the block.

The counter value increases by 1 when the rising edge applied at the "Up" input.

When the rising edge applied the "Dow" input, the counter value 1 is decremented.

The reference point from which counting starts can be specified by writing on the block register.

Up to 32-bit counting can be performed.

182 Distributed Control Systems / Programming Manual

6.2.5 Sample Application

In the example;

At the rising edge of each logic high(1) signal DI1, the counter value is incremented by 1.

At the rising edge of each logic high(1) signal DI2, the counter value is decremented by 1.

DI3 input logic high(1) is used to reset the counter.

183 Distributed Control Systems / Programming Manual

6.3 RUN TIME

6.3.1 Connections

Act: Activation input

#RTB0: Block output

Res: Reset input

6.3.2 Connection Explanations

Act: Activation input

Block enable input.

Res: Reset

Run-time counter’s reset input.

#RTB0: Block output

Runtime value.

184 Distributed Control Systems / Programming Manual

6.3.3 Block Settings

Time Scale: “Seconds, minutes, hours" can be selected
from the time scales.

6.3.4 Block Explanation

Run Time block is used to save the runtime.

When the "Act" input is logic(1), it counts the time in selected time scale (seconds, minutes,

hours and writes to the output.

On every logic(1) signal applied on the "Act" input, it continues to count from the last value.

The counter value is reset when the rising edge is applied on the block "Res" input.

185 Distributed Control Systems / Programming Manual

6.3.5 Sample Application

In the example, RQ0 is started from DI0 input and stopped from DI1 input.

With the RTB block, the duration when the RQ0 is logic high(1) will be monitored.

DI2 input will reset the run time.

7 GSM BLOCKS

In the group of GSM blocks; There are blocks for receiving SMS, sending SMS, starting DTMF

call, receiving DTMF call and GSM signal quality.

186 Distributed Control Systems / Programming Manual

 (1)

SMS contents and GSM numbers are written in the "String Table" in GSM blocks. Picture (1)

SMS contents and phone numbers written in the text table are selected with the "String

Reference Block".

187 Distributed Control Systems / Programming Manual

7.1 SMS RECEIVER

7.1.1 Connections

No: Phone Number input

#SMSRc0: Block output

Msg: Message input Fla: Flag output

7.1.2 Connection Explanations

No: Phone Number input

It is for SMS filtering by sender phone number. Only SMS messages send by this phone

number is accepted. If it is empty or not connected, there will be no SMS filtering by sender

phone number.

Msg: Message input

Reference message input for comparison

#SMSRc0: Block output

The received SMS message is processed according to the parse method. Result of SMS Text

parsing is written block output.

Fla: Flag output

If a new SMS text message is received, the Fla output generates a single cycle pulse output.

188 Distributed Control Systems / Programming Manual

7.1.3 Block Settings

Parse Method: There are four methods; “String
Compare”, “Ascii to Integer”, “Text=:Value” and
”Write Into Device”.

Text Offset: In the string table, determines the
offset which the received SMS will be saved into.
Note: Text offset should be selected from
unused string offset. Because, received text
message will be written into it.

7.1.4 Block Explanation

SMS Receiver block is used in applications requiring SMS control. String reference blocks are

connected to the No and Msg inputs.

“Text Offset” combobox, determines the offset which the received SMS will be saved into. This

index value should be an appropriate value in the string table, care must be taken for not to affect

the indices used by other blocks.

The incoming SMS text is written to the index determined from the options. Thus, this value can

be used as desired with text reference.

Phone No to be accepted: You need to enter the telephone number into the "String Table" which

will be used to accept SMS messages including the country code (i.e +44752…). If an SMS from

any number will be accepted, this input is left blank or the phone number is entered as “0”.

189 Distributed Control Systems / Programming Manual

Parse Method: If the “String Compare” option is selected in the “Parse Method” combobox in the

SMS Receiver block settings, the text of the received SMS is compared with the text in the “Msg”

input. If the text compared with the received SMS is same, the block output becomes high(1) and

continuously remains in high(1) state.

If the "Ascii To Integer" option is selected in the "Parse Method" combobox, content of the

received SMS is converted into integer and written to the block output.

If the “Text=:Value” option is selected in the “Parse Method” combobox, the “Value” value in the

“Text=:Value:” format message saved in the text table is written to the block “Out” output as soon

as the SMS is received. If the text reference connected to the msg pin is the same as the Text

part of the message, the value is written to the output. If not the same, it preserves the value. For

example, if ABC is written in the text reference, when ABC=123 is sent, 123 information is written

to the output. If AB=12 is sent, the value does not change.

If the "Write Into Device" option is selected, it allows the received SMS to be saved to the string

offset selected from the block special settings.

If a text reference block is connected to the No pin, only the SMS from the connected number will

be received, otherwise it will receive the SMS from any number.

When each SMS is received, the Fla output generates a rising edge trigger.

The SMS Receiver block is available on non-PPP firmwares if only the device has GSM feature

and SMS feature is turned on.

190 Distributed Control Systems / Programming Manual

7.1.5 Sample Application

SMS Receiver blocks are used to turn the system on and off. The system works according to the

information from the number indicated in the SMS Receiver block. When the "open_role" SMS is

received from the number specified in the string table, the pulse relay output and the RQ0 will

become logical high(1) and the system will start to operate. When we consider the system off

blocks group; "close_role" is connected to the string reference, and when "close_role" SMS is

received from the number specified in the string table, the pulse relay RQ0 will become logical

low(0) and the system will stop. "Out" and "Fla" outputs are connected to AND gate, and each

time the SMS arrives, the operations are performed in the same way.

191 Distributed Control Systems / Programming Manual

7.2 SMS SEND

7.2.1 Connections

IN: Value input

Trg: Block trigger input

No: Number input

Msg: Message input

7.2.2 Connection Explanations

IN: Value input

Block input used in sending SMS Text

Trg: Block trigger input

Rising edge at this input sends the SMS.

No: Number input

Destination phone number of sending SMS

Msg: Message input

Text message body used in sending SMS Text

7.2.3 Block Settings

There are no block settings.

7.2.4 Block Explanation

This block is used to send SMS Texts from the device to any mobile phone. When a rising edge

signal is applied to “Trg” input of the block, SMS text is build from the “Msg Input” - SMS text body

and then it will be sent to mobile number defined in “Number Input”

192 Distributed Control Systems / Programming Manual

No and Msg inputs must be connected to string type blocks. When the rising edge of the logical

high(1) signal is input to the “Trg” input, the SMS is sent.

The string reference blocks are connected to the input “No” and the number to which the SMS

will be sent is selected from string table.

The phone number must contain country code like "+901234567898".

If you need to send SMS to the last number which SMS is received from, the symbol "<" defined

in the string table should be entered in the string reference connected to the No input.

In the Msg input, the SMS content to be sent is entered. This content also needs to be connected

through a string reference block.

If you want to send a block value connected to the block’s “IN” input as SMS, “%s” should be

written into the SMS content to be sent in the string table. For example; "Room temperature is

%s". (“% s” is replaced with the block value in the IN input is replaced.)

In order to be able to send more than one block values by SMS, '$' is added to the beginning of

the block addresses and added to the string table. For example, if the description in the string

table is "Measured values are line1: $3000, line2: $3004" is sent, values of the blocks 3000 and

3004 are sent.

Usage Example Text Result

$<Block Numner> Temp: $5000 , Hum: $5001 Temp: 23.45, Hum: 88.02

$TIME Value: $3000 at $TIME Value: 2341 at 18.06.2018 09:55

$SRNO Value $3008 from $SRNO Value 324 from 1000213

Note: A maximum of 63 characters can be entered into the text field in the String Table.

Note: The SMS functions are only available on PPP disable firmware.

193 Distributed Control Systems / Programming Manual

7.2.5 Sample Applications

In the example; The SMS trigger is provided on rising edge trigger from DI0 input.

The string table contains the number and SMS content to be sent.

The SMS content is "temperature =%s,_flow=$5001". Here, the RTD temperature value of the

SMS Send block’s “IN” input is sent with the command "%s" and AI0 (line 5001) is sent with "$

5001" command as SMS with the rising edge trigger coming to the block value “Trg” input.

194 Distributed Control Systems / Programming Manual

7.3 INCOMING DTMF CALL

7.3.1 Connections

No: Incoming call number input

#InCall0: DTMF code output

Cal: Call accepted output

7.3.2 Connection Explanations

No: Incoming call number input

It is for filtering by caller phone number. Only incoming calls from this phone number is

accepted. If it is empty or not connected, there will be no incoming call filtering.

DTM: DTMF code output

DTMF code output.

Cal: Call accepted output

If an incoming call is accepted and haven’t yet hang up, this output goes to Logic (1)

195 Distributed Control Systems / Programming Manual

7.3.3 Block Settings

Telephone number to be accepted: The phone
number to be accepted can be entered inside the
block.

Auto Suspend Call: This option can be clicked if the
incoming call is requested to be busy.

7.3.4 Block Explanation

Thanks to the DTMF blocks, Remote projects via Phone DTMF codes can be easily done. If

incoming call is generated from the specified number or there is no phone number filter, then,

call is accepted by the device and the DTMF codes entered from the remote phone is reflected

on the block output.

The string reference blocks are connected to the input “No” and the number to which the call will

be done is selected from string table.

Phone number should include country code like "+901234567898".

Call output generates a logical high(1) signal at its output as long as a call continues.

After the call is accepted, the "*" key is pressed first in the telephone in order to operate with the

DTMF code. Enter the desired DTMF code and press the "#" key. Here, the value entered

between * and # is transferred to the DTM output as a “word integer” output.

196 Distributed Control Systems / Programming Manual

As an example, when "* 1234 #" is entered, the value of "1234" is read out from DTM output. This

value can be used as a word value as desired.

The same operation is repeated to transfer the DTMF code again. That is, DTMF code input is

started with "*" key. The DTMF code entered with the "#" key is transmitted to the output.

Note: The DTMF Incoming Call block is available on non-PPP firmware.

7.3.5 Sample Applications

In the example; The telephone number whose call will be accepted is entered with the text

reference. If "equal" is selected in the comparators, if the inB value of the comparison type is

equal to the inA value, then the outputs are logic high(1).

When the DTMF code * 10 # is sent after the call is accepted, the pulse relay is set and RQ0 will

be logic high(1). When the DTMF code * 20 # is sent, the pulse relay output will be reset and RQ0

will be logic (0). In this way, any equipment with DTMF codes can be subjected to remote control

operations such as turn off/on etc.

197 Distributed Control Systems / Programming Manual

7.4 OUTGOING DTMF CALL

7.4.1 Connections

No: Dialing Number

#OutCall0: Block output

Ori: Start to dialing

7.4.2 Connection Explanations

No: Dialing Number

Phone number to dial

Ori: Start to Dial

The block input that must be changed to logical high(1) to start a call.

#OutCall0: Block output

It is the block output that indicates whether the call has been accepted or not.

198 Distributed Control Systems / Programming Manual

7.4.3 Block Settings

Telephone number to be called: The phone number
to be called can be entered in the block.

Auto Suspend Call: This option can be clicked if the
incoming call is requested to be busy.

7.4.4 Block Explanation

Applying the logical high (1) signal to the “Ori” input of the DTMF Originate Call block makes a

call to the defined number.

The DTMF code cannot be sent even if the incoming call is answered by the user. In the case of

a scenario in which a program is defined, a call is made with the rising edge trigger coming to the

“Ori” input.

Enter the phone number to originate the call to input “No” with string reference blocks. You can

also enter the number in the block options by leaving this input blank.

When a high-level signal arrives at the “Ori” input, the block will be activated and the specified

number will be called.

Enter the phone number to originate the call will be done to Turkey in the text table "+90" adding

"+901234567898" should be entered.

199 Distributed Control Systems / Programming Manual

Note: The DTMF Originate Call block is available on devices with the GSM feature and the device

is available on the SIM card when the call feature is turned on.

7.4.5 Sample Applications

The telephone number to call is determined by text reference. The number specified by the rising

edge trigger signal coming to the input "Ori" will be dialed.

200 Distributed Control Systems / Programming Manual

7.5 GSM SIGNAL QUALITY

7.5.1 Connections

#CSQ0: Block output

7.5.2 Connection Explanations

O: Block output

It is a block output with a signal quality value between -1 and 31.

7.5.3 Block Settings

There are no block settings

7.5.4 Block Explanation

This is a block that can be used to monitor GSM signal quality. It gives a value between -1 and

31. Values -1 and 0 indicate that there is no GSM connection, and values 1 and 31 indicate the

signal quality of the device.

If block value is 1, the signal level is at the lowest level and 31 is at the highest level.

This feature is only available on non-PPP firmwares for devices with GSM capability.

201 Distributed Control Systems / Programming Manual

8 DATA/EVENT RECORDING BLOCK

8.1 LOGGER

8.1.1 Connections

Trg: Block trigger input

En: Block activation input

8.1.2 Connection Explanations

Trg: Block trigger input

Every rising edge triggers all the block data with the "Add to log-record memory" selected in log-

memory.

En: Block activation input

When there is logic(1) signal in its input, the block is active.

202 Distributed Control Systems / Programming Manual

8.1.3 Block Settings

Log Record Frequency(Minutes):
How often the data can be logged is set in minutes
from within the block.

8.1.4 Block Explanation

In control devices to do LOG record operation is used. LOG record operation on the devices

which support the SD card is made on SD card, if there is no SD card in the device it is done on

the flash memory.

With every high edge signal which is comes to Trg input, the LOG record is kept. Which block

datas will write to the LOG memory in logger operation is determined with the choosing “Add to

log-record memory". Block data and real time information are written together.

When is applied the high signal to the “En” input, The block will active.

“Add to log-record memory” choice must be choosen in block choices which is wanted recording

for log record.

203 Distributed Control Systems / Programming Manual

8.1.5 Sample Application

In the sample; A logging process is performed periodically using a symmetric pulse generator

for 5 minutes. The values of all blocks with the add to log record option checked are added to

the log record memory every 5 minutes.

9 REGISTER/VARIABLE BLOCKS

9.1 WORD REGISTER

9.1.1 Connections

I1: Data Input

#WReg0: Word Output

Lat: Latch Signal

9.1.2 Connection Explanations

I1: Data Input

Data input which is latched into register.

Lat: Latch Signal

Data is latched into the register memory within control of Lat signal.

#WReg0: Word Output

204 Distributed Control Systems / Programming Manual

#WReg0 is Block output. It reflects the internal 16 bit Word Register value.

9.1.3 Block Settings

Register Initial Value: The initial value which will be
written in the register memory at startup.

Edge Type: Latching of I1 value into Register Memory
is controlled by Lat Signal. The edge selection type
determines how the Lat signal will control the
Latching process.
Edge Type Options: High, Low, Raise, Fall, Raise/Fall

Persistence: If it is selected, register value is non-
volatile even if the device power is off. Last value of
the register is reloaded automatically after power on.

Load Initial Value: Active only Persistence is selected.
This is a selection between initial value coming from
user project or last saved value coming from non-
volatile momory as a initial value after new project is
downloaded into device.

9.1.4 Block Explanation

Word Register Block is used as a 16 bit unsigned integer type value holder. It is used as

variable in PLC projects.

Using the Lat Signal, the block can be used like a D-Type Latch.

Latching of I1 value into Register Memory is controlled by Lat Signal. The edge selection type

determines how the Lat signal will control the Latching process.

Possible “Edge type “ options and usage are given at following table:

205 Distributed Control Systems / Programming Manual

High Only if the Lat Signal is Logic(1), Value at I1 input is saved into Register Memory

Low Only if the Lat Signal is Logic(0), Value at I1 input is saved into Register Memory

Note: if Lat signal is not connected, it means to Low – Logic(0)

Raise Value at I1 input is saved into Register Memory when Raising edge of the Lat Signal

Fall Value at I1 input is saved into Register Memory when Falling edge of the Lat Signal

Both Value at I1 input is saved into Register Memory when Raising or Falling edge of the Lat

Signal

I1 Data Input signal type may be different from register block type. For example, Analog signal

can be applied to Word register block. In that case, Automatic variable casting occurs.

Therefore, user must be pay attention to variable types.

Sample transformation table is given the below from different variable types for entiring value to

the word register

It is the variable type in input Sample Input Value It is value which is will be loaded to
the word register

Binary 0 0

Binary 1 1

Analog 12.34 12

Analog 98.9 98

Long 65000 65000

Long 80000 (0x00013880) 14464 (0x3880)

206 Distributed Control Systems / Programming Manual

9.1.5 Sample Application

In samples

1- Word register which is 4000 block round, counter value which is in the I1 input to “Lat” input with

the logic(1) signal which is comes from DI1 is taken to in the 4000 round block. (Edge type is

selected as “High”)

2- The value is written as offline and online to in the 4001 block number word register.

9.2 ANALOG REGISTER

9.2.1 Connections

I1: Data Input

#AReg0: Analog Output

Lat: Latch Signal

207 Distributed Control Systems / Programming Manual

9.2.2 Connection Explanations

I1: Data Input

Data input which is latched into register.

Lat: Latch Signal

Data is latched into the register memory within control of Lat signal..

#AReg0: Analog output

#AReg0 is Block output. It reflects the internal 32 bit Floating Point Analog Register value.

9.2.3 Block Settings

Register Initial Value: The initial value which will be
written in the register memory at startup.

Edge Type: Latching of I1 value into Register Memory
is controlled by Lat Signal. The edge selection type
determines how the Lat signal will control the
Latching process.
Edge Type Options: High, Low, Raise, Fall, Raise/Fall

Persistence: If it is selected, register value is non-
volatile even if the device power is off. Last value of
the register is reloaded automatically after power on.

Load Initial Value: Active only Persistence is selected.
This is a selection between initial value coming from
user project or last saved value coming from non-
volatile momory as a initial value after new project is
downloaded into device.

208 Distributed Control Systems / Programming Manual

9.2.4 Block Explanations

Analog Register Block is used as a 32 bit Floating Point type value holder. It is used as variable

in PLC projects.

Using the Lat Signal, the block can be used like a D-Type Latch.

Latching of I1 value into Register Memory is controlled by Lat Signal. The edge selection type

determines how the Lat signal will control the Latching process.

Possible “Edge type “ options and usage are given at following table:

High Only if the Lat Signal is Logic(1), Value at I1 input is saved into Register Memory

Low Only if the Lat Signal is Logic(0), Value at I1 input is saved into Register Memory

Note: if Lat signal is not connected, it means to Low – Logic(0)

Raise Value at I1 input is saved into Register Memory when Raising edge of the Lat Signal

Fall Value at I1 input is saved into Register Memory when Falling edge of the Lat Signal

Both Value at I1 input is saved into Register Memory when Raising or Falling edge of the Lat

Signal

I1 Data Input signal type may be different from register block type. For example, Word signal

can be applied to Analog register block. In that case, Automatic variable casting occurs.

Therefore, user must be pay attention to variable types.

Sample transformation table is given the below from different variable types for entiring value to

the word register

It is the variable type in input Sample Input Value It is value which is will be loaded to
the analog register

Binary 0 0.0

Binary 1.12 1.12

Word 12 12.0

Word 98.45 98.45

Long 65000 65000.0

Long 80000 80000.0

209 Distributed Control Systems / Programming Manual

9.2.5 Sample Application

In the sample;

“-5.612 “ value was written as offline or online in to the analog register which is 5001 block

number by the user. The output of block which is 6002 due to connected the 6000 block number

“–5.612” value was written in to the analog register which is 6000 block number. (“Lat” input is

given the blank because of “Edge Type is selected as “low”.)

9.3 LONG REGISTER

9.3.1 Connections

I1: Data Input

#LReg0: Long Output

Lat: Latch Signal

9.3.2 Connection Explanations

I1: Data Input

Data input which is latched into register.

Lat: Latch Signal

Data is latched into the register memory within control of Lat signal.

#LReg0: Long Output

#LReg0 is Block output. It reflects the internal 32 bit signed Long Register value.

210 Distributed Control Systems / Programming Manual

9.3.3 Block Settings

Register Initial Value: The initial value which will be
written in the register memory at startup.

Edge Type: Latching of I1 value into Register Memory
is controlled by Lat Signal. The edge selection type
determines how the Lat signal will control the
Latching process.
Edge Type Options: High, Low, Raise, Fall, Raise/Fall

Persistence: If it is selected, register value is non-
volatile even if the device power is off. Last value of
the register is reloaded automatically after power on.

Load Initial Value: Active only Persistence is selected.
This is a selection between initial value coming from
user project or last saved value coming from non-
volatile momory as a initial value after new project is
downloaded into device.

9.3.4 Block Explanation

Word Register Block is used as a 32 bit signed integer type value holder. It is used as variable

in PLC projects.

Using the Lat Signal, the block can be used like a D-Type Latch.

Latching of I1 value into Register Memory is controlled by Lat Signal. The edge selection type

determines how the Lat signal will control the Latching process.

Possible “Edge type “ options and usage are given at following table:

211 Distributed Control Systems / Programming Manual

High Only if the Lat Signal is Logic(1), Value at I1 input is saved into Register Memory

Low Only if the Lat Signal is Logic(0), Value at I1 input is saved into Register Memory

Note: if Lat signal is not connected, it means to Low – Logic(0)

Raise Value at I1 input is saved into Register Memory when Raising edge of the Lat Signal

Fall Value at I1 input is saved into Register Memory when Falling edge of the Lat Signal

Both Value at I1 input is saved into Register Memory when Raising or Falling edge of the Lat

Signal

I1 Data Input signal type may be different from register block type. For example, Analog signal

can be applied to Long register block. In that case, Automatic variable casting occurs.

Therefore, user must be pay attention to variable types.

Sample transformation table is given the below from different variable types for entiring value to

the Long register.

It is the variable type in input Sample Input Value It is value which is will be loaded to
the long register

Binary 0 0

Binary 1 1

Analog 12.34 12

Analog 98.9 98

Word 65000 65000

212 Distributed Control Systems / Programming Manual

9.3.5 Sample Application

In the example:

Because of "Edge Type" of the "Long Register" is "Raise" selected , in each rising edge trigger

to the Lat input, the value of the "Analog Ramp" is recorded in the "Long Register". (filtered after

the comma)

9.4 BINARY REGISTERS

9.4.1 Connections

I1: Data Input

#BReg0: Binary output

Ena: Latch Signal

9.4.2 Bağlantı Açıklamaları

I1: Data Input

Data input which is latched into register.

Lat: Latch Signal

Data is latched into the register memory within control of Lat signal.

#BReg0: Binary output

213 Distributed Control Systems / Programming Manual

#BReg0 is block output. It reflects the internal 1 bit Boolean Register value.

9.4.3 Block Settings

Register Initial Value: The initial value which will be
written in the register memory at startup.

Edge Type: Latching of I1 value into Register Memory
is controlled by Lat Signal. The edge selection type
determines how the Lat signal will control the
Latching process.
Edge Type Options: High, Low, Raise, Fall, Raise/Fall

Persistence: If it is selected, register value is non-
volatile even if the device power is off. Last value of
the register is reloaded automatically after power on.

Load Initial Value: Active only Persistence is selected.
This is a selection between initial value coming from
user project or last saved value coming from non-
volatile momory as a initial value after new project is
downloaded into device.

9.4.4 Block Explanation

Binary Register Block is used as a 1 bit Boolean type value holder. It is used as variable in PLC

projects.

Using the Lat Signal, the block can be used like a D-Type Latch.

Latching of I1 value into Register Memory is controlled by Lat Signal. The edge selection type

determines how the Lat signal will control the Latching process.

Possible “Edge type “ options and usage are given at following table:

214 Distributed Control Systems / Programming Manual

High Only if the Lat Signal is Logic(1), Value at I1 input is saved into Register Memory

Low Only if the Lat Signal is Logic(0), Value at I1 input is saved into Register Memory

Note: if Lat signal is not connected, it means to Low – Logic(0)

Raise Value at I1 input is saved into Register Memory when Raising edge of the Lat Signal

Fall Value at I1 input is saved into Register Memory when Falling edge of the Lat Signal

Both Value at I1 input is saved into Register Memory when Raising or Falling edge of the Lat

Signal

I1 Data Input signal type may be different from register block type. For example, Analog signal

can be applied to Binary register block. In that case, Automatic variable casting occurs. Therefore,

user must be pay attention to variable types.

Sample transformation table is given the below from different variable types for entiring value to

the word register

It is the variable type in input Sample Input Value It is value which is will be loaded to
the binary register

Word 0 0

Word 234 1

Analog 0.001 1

Analog -98.9 1

Long 0 0

Long 80000 1

215 Distributed Control Systems / Programming Manual

9.4.5 Sample Application

In the example;

Because of the name of binary register as “fall” is selected, every low edge trigger comes to Ena

input, word register which ıts value is 10 was written to binary register as 1.

9.5 BINARY FLAG

9.5.1 Connections

In: Block input

#BFlg0: Block output

9.5.2 Connecrtion Explanation

In: Block input

It is block input.

#BFlg0: Block output

It is block output.

216 Distributed Control Systems / Programming Manual

9.5.3 Block Settings

There are no block settings.

9.5.4 Block Explanation

The value in input signal is transmitted to the block output with one PLC cycle delay.

Flag register may be used to prevent logic operations from infinite logic loops when feedback is

applied.

Binary Flags operate with 1 bit binary values.

9.5.5 Sample Application

In the example:

DI0 triggers the "Set" input of the "Pulse Relay" block and sets DQ0 to the logic (1) position, at

the same time the pull delay is also triggered.

After delaying 3 second the draw, the binary flag has become logical (1), resetting the "Pulse

Relay", DQ0 has taken to logical (0) position.

The binary flag is used to prevent "feedback error".

217 Distributed Control Systems / Programming Manual

9.6 WORD FLAG

9.6.1 Connections

In: Block input

#WFlg0: Block output

9.6.2 Connection Explanations

In: Block input

It is the block input.

#WFlg0: Block output

It is block output.

9.6.3 Block Settings

There are no block settings.

9.6.4 Block Explanation

The value in input signal is transmitted to the block output with one PLC cycle delay.

Flag register may be used to prevent logic operations from infinite logic loops when feedback is

applied. This is not permitted, as this will cause an infinite loop in the PLC logic loop. In the logic

where feedback is required, flag blocks are added to the feedback line to prevent an infinite loop

error.

Word Flags operate with 16 bit unsigned values.

218 Distributed Control Systems / Programming Manual

9.6.5 Sample Application

In the example; A 16-bit counter is designed.

As soon as the binary register has value 1, the counter starts to increase.

The GZDU block is programmed to produce 1 trigger per second. The output of the Word Math

block is linked back to the Word Math block I1 entry with Word Flag.

Because of the "Word Register" "Edge Type" is "High", Binary Register has to be 1, for

increasing the counter.

As soon as the Binary Register has a value of 1, the value of the "High Gate" is transferred to

the "Word Flag" and then to the Word Register.

"Word Math" block, INB input and the INA input is added in each trigger of the GZDU block.

Then new value is written in "Word Register".

So 16-bit counter has been designed.

219 Distributed Control Systems / Programming Manual

9.7 ANALOG FLAG

9.7.1 Connections

In: Block input

#AFlg0: Block output

9.7.2 Connection Explanations

In: Block input

It is block input.

#AFlg0: Block output

It is block output.

9.7.3 Block Settings

There are no block settings.

9.7.4 Block Explanation

The value in input signal is transmitted to the block output with one PLC cycle delay.

Flag register may be used to prevent logic operations from infinite logic loops when feedback is

applied.

Analog Flags operate with 32 bit floating point values.

220 Distributed Control Systems / Programming Manual

9.7.5 Sample Application

In the example;

“Stop Value” of the Analog Ramp is updated with Analog Flag 5006.

Analog Ramp is reset after the value of the output of the Analaog Comparator with Analog Flag

5000 has passed the threshold value. The ramping process has been restarted by the new Stop

Value.

221 Distributed Control Systems / Programming Manual

9.8 LONG FLAG

9.8.1 Connections

I1: Block input

#LFlg0: Block output

9.8.2 Connection Explanations

I1: Block input

It is block input

#LFlg0: Block output

It is block output

9.8.3 Block Settings

There are no block settings

9.8.4 Block Explanation

The value in input signal is transmitted to the block output with one PLC cycle delay.

Flag register may be used to prevent logic operations from infinite logic loops when feedback is

applied.

Word Flags operate with 32 bit signed integer values..

222 Distributed Control Systems / Programming Manual

Sample Application

In the example;

The value of Up / Down Counter is reset, when it reaches a certain value that is written on InB

input of the Long Comparator. When the value of the "Long Comparator" InB input is exceeded,

the block output is set to 1. Then "Long Flag" resets the Up / Down Counter after a PLC cycle

time delay.

Note: In the example, because the output of the Long Comparator is binary, other flag types

(word, analog, bit) can be used too.

223 Distributed Control Systems / Programming Manual

10 MODBUS PROTOCOL BLOCKS

10.1 MODBUS RTU MASTER

10.1.1 Connections

Ser: Serial port block
input

 #MRM0: Block output

Tx: Tx Value output

Err: Number of errors in submitted
requests

Sta: Connection state output

10.1.2 Connection explantations

Ser: Serial port block input

It is the block input which will be connected to the communication port.

#MRM0: Blok output

Block’s output connection

Tx: Tx value output

It is the output connection where the number of requests sent is read

Err: Number of errors in submitted requests

It is the output connection where the error count of sent requests is read

Sta: Connection state output

State of the last executed request

224 Distributed Control Systems / Programming Manual

10.1.3 Custom Settings

Request Timeout: Determines the reply’s
timeout duration

10.1.4 Block Explanation

Modbus RTU Master block activates the Modbus RTU Master protocol on physical interface

connected over communication port input. Standart Modbus RTU Master block operates on

RS485 or RS232 serial port. Since only one Modbus RTU Master block is possible on a RS485

bus, only one Modbus RTU Master block can be opened on each serial channel. A Modbus

RTU Master block can be added per port to a device which have more than one RS485 ports.

After the protocol is actived with Modbus RTU Master block; as a final step you need to connect

“request send blocks” to Master block. Generally, requests are grouped as reading and writing

in the Modbus protocol. When Modbus request blocks which are used for reading and writing

are triggered, the request is added to the queue on Master Block. If the RS485 line is idle, the

requests in the queue on Master Block are sent one by one and response is waited. If a

response is received before “timeout” duration, the reply is processed, if no reponse is received

the request is canceled and error counter is increased by one. Here “timeout” duration is defined

in master block’s settings section.

225 Distributed Control Systems / Programming Manual

Modbus messages are instantenous reading/writing requests and they do not contain any time

tag information. Therefore, request queue on master block has smart mechanisms that provides

only keeping the latest request on queue regarding to a point.

10.1.5 Sample Application

On the serial port Modbus RTU Master protocol is actived. The device as a Modbus RTU

Master block sends reading and writing requests to slave devices.

226 Distributed Control Systems / Programming Manual

10.2 MODBUS TCP MASTER

10.2.1 Connections

TCP: Block input

 #MTM0: Block output

Tx: Tx value output

Err: Error value output

Sta: Connectıon status output

10.2.2 Connection Explanation

TCP: Block input

The block input connection to which the communication port is connected.

#MTM0: Block output

The block output connection.

Tx: Tx value output

It is the output connection which indicates the number of requests sent

Err: Number of errors in submitted requests

It is the output connection which indicates the error count of the sent requests

Sta: Connection status output

Indicates if the last executed request is succesful or not.

227 Distributed Control Systems / Programming Manual

10.2.3 Custom Settings

Request Timeout: This is the value which
determines the response time.

10.2.4 Block Explanation

The Modbus TCP Master block activates the Modbus TCP Master protocol on physical interface

connected over communication port input.

After the protocol is actived with Modbus TCP Master block; as a final step you need to connect

“request send blocks” to Master block. Generally, requests are grouped as reading and writing

in the Modbus protocol. When Modbus request blocks which are used for reading and writing

are triggered, the request is added to the queue on Modbus TCP Master Block. If the RS485

line is idle, the requests in the queue on Modbus TCP Master Block are sent one by one and

response is waited. If a response is received before “timeout” duration, the reply is processed, if

no reponse is received the request is canceled and error counter is increased by one. Here

“timeout” duration is defined in master block’s settings section.

Modbus messages are instantenous reading/writing requests and they do not contain any time

tag information. Therefore, request queue on master block has smart mechanisms that provides

only keeping the latest request on queue regarding to a point.

228 Distributed Control Systems / Programming Manual

10.2.5 Sample Application

Modbus TCP Master protocol is actived on TCP socket. The device as an TCP Master sends

reading and writing requests to slave devices.

It is necessary to connect the Modbus TCP Master block Out output to the corresponding “Mas”

inputs of the Modbus Reader / Writer blocks.

If the data packet is transmitted / received successfully, the Sta output is 0 and if not, it is 1.

229 Distributed Control Systems / Programming Manual

10.3 MODBUS TCP SLAVE

10.3.1 Connections

TCP: Block Input

Out: Block output

Rx: Rx value output

Add: Modbus ID input

Err: Error value output

Sta: Connection status output

10.3.2 Connection Explanation

TCP: Block input

The block input connection to which communication port is connected

Add: Modbus ID input

Used to identify the Modbus ID address externally

Out: Block output

The output connection of the block

Rx: Rx value output

It is the output connection which indicates the number of requests sent.

Err: Error value output

It is the output connection which indicates the error count of the requests sent.

Sta: Connection status output

Indicates the success state of the last executed request.

230 Distributed Control Systems / Programming Manual

10.3.3 Custom Settings

Modbus RTU Slave: The ID of the slave device to be
connected.

10.3.4 Block Explanation

The Modbus TCP Slave block activates the Modbus TCP Slave protocol on physical interface

connected over communication port input.

The device activated as a Modbus TCP Slave responds to requests with its own Modbus Id from

the defined communication port.

231 Distributed Control Systems / Programming Manual

All blocks in the logic project and the Modbus addresses defined in the variable address table

will now be accessible with these channel and protocol settings

Block Name Register Adress Function Code

Binary - Binary Blocks 1000 (0x01) Read Coils
(0x02) Read Discrete Inputs
(0x05) Write Single Coil
(0x0F) Write Multiple Coils

Word Blocks 4000 (0x03) Read Holding Registers
(0x04) Read Input Registers
(0x06) Write Single Register
(0x10) Write Multiple registers

Analog Blocks 6000 (0x03) Read Holding Registers
(0x04) Read Input Registers
(0x06) Write Single Register
(0x10) Write Multiple registers

Long Blocks 8000 (0x03) Read Holding Registers
(0x04) Read Input Registers
(0x06) Write Single Register
(0x10) Write Multiple registers

232 Distributed Control Systems / Programming Manual

10.3.5 Sample Application

TCP Socket Block is selected as Server, Modbus TCP Slave block is connected to the block

output and in this way the device is programmed in Server mode. (Connection type is selected

as Ethernet.)

A device that is programmed in this way can be connected by another Modbus TCP Client.

233 Distributed Control Systems / Programming Manual

10.4 MODBUS RTU SLAVE

10.4.1 Connections

Ser: Block input

Out: Block output

Rx: Rx değeri çıkışı

Add: Modbus ID input

Err: Error value output

Sta: Connection status output

10.4.2 Connection Explanation

Ser: Block input

The block input to which the communication port is connected.

Add: Modbus ID input

Used to identify the Modbus ID address externally

Out: Block output

Output connection of the block.

Tx: Tx value output

It is the output connection which indicates the number of requests sent.

Err: Error value output

It is the output connection which indicates the error count of the submitted requests

Sta: Connection status output

Indicates the success state of the last executed request.

234 Distributed Control Systems / Programming Manual

10.4.3 Custom Settings

Modbus Slave Adress: The ID of the slave device to
be connected.

10.4.4 Block Explanation

The MODBUS RTU Slave block activates the MODBUS RTU Slave protocol on physical

interface connected over communication port input.

The device activated as a MODBUS RTU Slave responds to requests with its own MODBUS Id

from the defined communication port.

All blocks in the logic project and the Modbus addresses defined in the variable address table

will now be accessible with these channel and protocol settings

235 Distributed Control Systems / Programming Manual

Blok Name Modbus slave adress Function Name

Two – Binary Blocks 1000 (0x01) Read Coils
(0x02) Read Discrete Inputs
(0x05) Write Single Coil
(0x0F) Write Multiple Coils

Word Blocks 4000 (0x03) Read Holding Registers
(0x04) Read Input Registers
(0x06) Write Single Register
(0x10) Write Multiple registers

Analog Blocks 6000 (0x03) Read Holding Registers
(0x04) Read Input Registers
(0x06) Write Single Register
(0x10) Write Multiple registers

Long Blocks 8000 (0x03) Read Holding Registers
(0x04) Read Input Registers
(0x06) Write Single Register
(0x10) Write Multiple registers

10.4.5 Sample Application

236 Distributed Control Systems / Programming Manual

10.5 MODBUS GATEWAY BLOCK

10.5.1 Connections

Mas: Master input

v
Sla: Slave input

10.5.2 Connection Explanation

Mas: Master Input

Modbus TCP Master block reference input

Sla: Slave Input

Modbus RTU Slave block reference input

10.5.3 Custom Settings

There is no custom settings.

10.5.4 Block Explanations

Basically, MODBUS Gateway devices are used to create a gateway for master units in the

MODBUS TCP network to access slave units in the MODBUS RTU network. Request packets

coming from MODBUS TCP network are converted into MODBUS RTU packets and sent to

RTU network. It also receives the response from the RTU network and sends it to the MODBUS

TCP network. On the MODBUS TCP side, the number of requests and replies in the

TRANSACTION must be the same. This is again the responsibility of the GATEWAY device.

Mikrodev Control Devices can be programmed as a GATEWAY between supported protocols.

MODBUS GATEWAY block is one of the blocks used for this purpose.

MODBUS GATEWAY block operates in both directions as below.

1-MODBUS TCP Master device to MODBUS RTU Slave device

2-MODBUS RTU Master device to MODBUS TCP Slave device.

237 Distributed Control Systems / Programming Manual

Connecting Master and Slave blocks is enough to operate as GATEWAY. If a request for a

different ID is received from the slave block, the corresponding request will be read via the

master block.

10.5.5 Sample Application

10.6 MODBUS WORD READER

10.6.1 Connections

Mas: Master input

Val: Block output

Trg: Trigger input

238 Distributed Control Systems / Programming Manual

10.6.2 Connection Explanation

Mas: Master input

It is master input connection.

Trg: Trigger input

Trigger input connection.

Val: Block output

It is block output.

10.6.3 Custom Settings

Modbus RTU ID: Determines the ID, the data to
be retrieved.

Register Address: Register addresses to be read
from slave IDs.

Register Count: The number of registers to be
read after the entered register address

Function Code: The function code which will be
selected to read the data.

Byte Order: Determines in which byte order the
data will be read.

239 Distributed Control Systems / Programming Manual

10.6.4 Blok Explanation

It is used to read a single 16-bit length MODBUS register adress. Reading request is created on

Trg signal’s high edge, is added to request queue in MASTER block.

10.6.5 Sample Application

The MODBUS TCP Master protocol is used to read data from a MODBUS slave device. The

MODBUS master protocol is activated on the device by connecting TCP socket block to the

Modbus Master.

The reference connection from the MODBUS master block is connected to the reader blocks,

and so the MODBUS master channel is selected to direct the reading requests. With every

rising edge trigger signal coming to the Trg input of the MODBUS reader, the read request is

added to the request queue of the master block. In cases where the master block

communication channel is available and is not in a waiting state for the previous request, the

requests in the queue will run sequentially.

240 Distributed Control Systems / Programming Manual

10.7 MODBUS FLOAT READER

10.7.1 Connections

Mas: Master input

Val: Block output

Trg: Trigger input

10.7.2 Connection Explantation

Mas: Master input

Master input connection.

Trg: Trigger input

Trigger input connection.

Val: Block output

Block output connection.

241 Distributed Control Systems / Programming Manual

10.7.3 Custom Settings

Modbus RTU Id: The value from which the data is
to be retrieved

Register Adress: Register addresses to be read
from slave Ids

Register Count: The number of registers to be
read after the entered register address

Function Code: The function code which will be
selected to read the data

Byte Order: The byte order of the data

10.7.4 Block Explanation

It is used for reading from 2 MODBUS registers which is storing 32 bits long IEEE 754 float

number. Reading request is created at high edge on Trg input and is added to Master block’s

request queue. In cases where the Master block communication channel is available and in the

case of no response waiting for the previous request, the requests in the request queue will run

in order.

242 Distributed Control Systems / Programming Manual

10.7.5 Sample Application

In the sample;

The values of 2 Float variables on another Modbus Server were read. Float Reader block

Object Addresses are 0 and 2.

 Two byte data is kept at 1 address. Since the float addresses are 2 bytes, 1 float data is read

from 2 addresses (1 float data is read from the address 0 and 1, and 1 float is read from the 2nd

and 3rd address.)

Because of the float variables can carry signed and decimal numbers, negative decimal (-x, yz)

and positive decimal (+ x, yz) 32 bit values can be read.

In order to make the reading process;

1- TCP socket block client must be selected.

243 Distributed Control Systems / Programming Manual

2- The Server IP and Port to be connected in the TCP socket block must be the same as

the server.

3- TCP socket block “Ena” input must be set to logic1.

4- Float Reader block Trigger input signal must be given to the trailing edge trigger signal.

(It should be noted that every rising edge trigger is a reading.)

5- Float reader block Object Properties, Modbus ID of the server to be connected must be

entered.

6- The desired variable to be read, the function code and byte order of the variable must

not be selected incorrectly.

10.8 MODBUS LONG READER

10.8.1 Connections

Mas: Master input

Val: Block output

Trg: Trigger input

10.8.2 Connection Explanation

Mas: Master input

Master input connection.

Trg: Trigger input

The trigger input connection.

Val: Block output

Block output connection.

244 Distributed Control Systems / Programming Manual

10.8.3 Sample Application

In the sample;

The values of 2 Long variables on another Modbus Server were read. Long Reader block

Object Addresses are 8000 and 8010.

1 byte data is kept at 1 address. Since the Long addresses are 2 bytes, 1 Long data is read

from 2 addresses (1 Long data is read from the address 8000 and 8001, and 1 Long data is

read from the 8010. and 8011. addresses.)

Because of the Long variables can carry signed numbers, negative (-) and positive (+) 32 bit

values can be read.

245 Distributed Control Systems / Programming Manual

In order to make the reading process;

1- TCP socket block client must be selected.

2- The Server IP and Port to be connected in the TCP socket block must be the same as

the server.

3- TCP socket block “Ena” input must be set to logic1.

4- Long Reader block Trigger input signal must be given to the trailing edge trigger signal.

(It should be noted that every rising edge trigger is a reading.)

5- Long reader block Object Properties, Modbus ID of the server to be connected must be

entered.

6- The desired variable to be read, the function code and byte order of the variable must

not be selected incorrectly.

10.8.4 Custom Settings

Modbus RTU Id: The id of the device from which
the data is to be retrieved

Register Adress: Register address to be read from
slave Ids

Register Count: The number of registers to be
read after the entered register address

Function Code: Function code which will be
selected to read the data.

Byte Order: The byte order of the data

246 Distributed Control Systems / Programming Manual

10.8.5 Block Explanation

The long of 32 byte which keep two numbers from long type fort to read the register adress.

Reading request is created on Trg signal’s high edge and added to Master block’s request

queue. In cases where the master block communication channel is available and is not in a

waiting state for the previous request, the requests in the queue will run sequentially.

10.9 MODBUS WORD WRITER

10.9.1 Connections

Mas: Master input

Trg: Trigger input

In: Block input

10.9.2 Connection Explanation

Mas: Master input

Master input connection.

Trg: Trigger input

The trigger input connection.

In: Block input

Block input connection.

247 Distributed Control Systems / Programming Manual

10.9.3 Custom Settings

Modbus RTU ID: The ID of the device from which
the data is to be retrieved.

Register Adress: Register address to be read from
slave IDs.

Register Count: The number of registers to be read
after the entered register address

Function Code: Function code which will be
selected to write the data.

Byte Order: The byte order in which the data is
written is determined

10.9.4 Block Explanation

It is used for writing on a single 16 bits long MODBUS register address. Writing request is

created on Trg signal’s high edge and added to Master block’s request queue.

248 Distributed Control Systems / Programming Manual

10.9.5 Sample Application

The MODBUS TCP Master protocol is used to read data from a MODBUS slave device.

MODBUS master protocol is activated on the device by connecting the TCP socket block to

Modbus Master block.

The reference connection from the MODBUS master block is connected to the reader blocks,

and so the MODBUS master channel is selected to direct the reading requests. With every

rising edge trigger signal coming into the “Trg” input of the MODBUS writer, the value in “In”

input is added to the request queue of the master block as a read request. In cases where the

master block’s communication channel is available and is not in a waiting state for the previous

request, the requests in the queue will run sequentially.

249 Distributed Control Systems / Programming Manual

10.10 MODBUS FLOAT WRITER

10.10.1 Connections

Mst: Master input

Trg: Trigger input

In: Block input

10.10.2 Connection Explanation

Mas: Master input

Master input connection

Trg: Trigger input

The trigger input connection

In: Block input

Block input connection

250 Distributed Control Systems / Programming Manual

10.10.3 Custom Settings

Modbus RTU ID: The ID of the device from which
the data is to be retrieved

Register Adress: Register address to be read from
slave IDs.

Register Count: The number of registers to be
read after the entered register address

Function Code: Function code which will be
selected to write the data.

Byte Order: The byte order of the data

10.10.4 Block Explanation

It is used for writing into 2 MODBUS registers which is storing 32 bits long IEEE 754 float

number. The writing request is created on the rising edge of the Trg input, and is added to the

MASTER block’s request queue.

251 Distributed Control Systems / Programming Manual

10.10.5 Sample Application

The MODBUS TCP Master protocol is used to read data from a MODBUS slave device.

MODBUS master protocol is activated on the device by connecting the TCP socket block to

Modbus Master block.

The reference connection from the MODBUS master block is connected to the reader blocks,

and so the MODBUS master channel is selected to direct the reading requests. With every

rising edge trigger signal coming into the “Trg” input of the MODBUS writer, the value in “In”

input is added to the request queue of the master block as a read request. In cases where the

master block’s communication channel is available and is not in a waiting state for the previous

request, the requests in the queue will run sequentially.

252 Distributed Control Systems / Programming Manual

10.11 MODBUS LONG WRITER

10.11.1 Connections

Mas: Master input

Ttk: Trigger input

Asd: Asdu address input

10.11.2 Connection Explanation

Mas: Master input

Master is the entrance.

Trg: Trigger input

The trigger is the input connection.

Asd: Asdu address input

Asdu address entry for connection.

253 Distributed Control Systems / Programming Manual

10.11.3 Custom Settings

Modbus RTU ID: The value from which the data is
to be retrieved

Register Adress: Register addresses to be read
from slave IDs

Register Count: The number of registers to be
read after the entered register address

Function Code: The function code which will be
selected to read the data

Byte Order: The byte order of the data

10.11.4 Block Explanation

It is used to write into 2 MODBUS registers that hold a 32 bits length long number. The writing

request is created on the rising edge of the Trg signal, and is added to the MASTER block’s

request queue.

254 Distributed Control Systems / Programming Manual

10.11.5 Sample Application

The MODBUS TCP Master protocol is used to read data from a MODBUS slave device.

MODBUS master protocol is activated on the device by connecting the TCP socket block to

Modbus Master block.

The reference connection from the MODBUS master block is connected to the reader blocks,

and so the MODBUS master channel is selected to direct the reading requests. With every

rising edge trigger signal coming into the “Trg” input of the MODBUS writer, the value in “In”

input is added to the request queue of the master block as a read request. In cases where the

master block’s communication channel is available and is not in a waiting state for the previous

request, the requests in the queue will run sequentially.

255 Distributed Control Systems / Programming Manual

10.12 MODBUS READ/WRITE TABLE

10.12.1 Connections

Mas: Master input

Tab: Table input

Trg: Trigger input

10.12.2 Connection Explanations

Mas: Master input

Master input connection

Tab: Table input

It is the reference input connection for the table or target/source block’s start

Trg: Trigger input

The trigger input connection

256 Distributed Control Systems / Programming Manual

10.12.3 Custom Settings

Modbus RTU Id: The value from which the data
is to be retrieved

Register Adress: Register addresses to be read
from slave Ids

Register Counter: The number of registers to be
read after the entered register address

Function Code: The function code which will be
selected to read the data

Byte Order: The byte order of the data

10.12.4 Block Explanation

It is used for reading/writing one or more registers starting from a specific register address.

The "register address" specifies from which register to start reading/writing.

"Number of registers" specifies the number of registers to read/write after the register specified

by the register address. The maximum number of registers can be 120.

For multi-line reading, the source of the data to be read is determined by the Tab input on the

block. The data source can be;

1- Table,

2- Normal Block Reference.

257 Distributed Control Systems / Programming Manual

If the table is used as a data source; the memory area occupied by the table block is used as

the source. The table size must be 2 times the number of registers defined by the block as

BYTE, because each MODBUS writer is 2 bytes in size.

10.12.5 Sample Application

10.12.6 Reading Word Table

In the sample;

It is aimed to read 3 Word variables starting from the first Modbus address with the Modbus

Reading / Writing Table (MRWT) block. In the MRWT block is defined the starting address (0.

Address) and the number of registers (3) to be read.

The data read with the MRWT block is written to the Modbus Table block. To do this, open the 6

Byte area in the Modbus table block. (Each Word variable is 2 Bytes.)

258 Distributed Control Systems / Programming Manual

The datas saved on Word Table Block, is written on Word Table Operation (WTop) block with

the property of Read Offset on WTop block.

Another practical method for transferring data through a gateway via PLC:

If you want to read the data carried on the Modbus Word Table block by another Modbus TCP

client via this PLC, the Projects / Variable Address Table can be used.

The Line Label is defined in the Word Table block. This defined Line Label is selected from the

Line Label section of the Variable Address Table. The Modbus Word Addresses is automatically

defined as the size of the Word Table block from the start address.

Thus, other Modbus TCP Clients can read the addresses of these PLC defined on the Variable

Address Table.

Note: The Modbus addresses defined in the variable address table should be selected

differently from the Modbus variable address ranges defined automatically in the Mikrodiagram.

(Modbus addresses starting from 1000, 4000, 6000, 8000 should not be used.)

259 Distributed Control Systems / Programming Manual

10.12.7 Reading to Consecutive Addresses

Another method of reading the variables of another Modbus RTU / TCP Slave with Modbus

Read / Write Table (MRWT); read the values on sequential address registers.

In the above example, it is aimed to read 3 Word variables with MRWT block. For this reason, 3

registers have been opened in the MRWT block.

260 Distributed Control Systems / Programming Manual

The address from which the reading is to be made is selected by the Register Address in

MRWT block.

With Register Count of MRWT block is defined that how many addresses from Modbus RTU /

TCP Slave's address is selected in the Register Address are selected. (In the above example, it

is selected to read 3 addresses as from the 0th address.)

From the Word Register connected to the Tab input of the MRWT block, the data in the Modbus

RTU / TCP Slave will be read on 3 Word Registers (4008, 4009., and 4010. Modbus addresses)

with sequential address.

Reading operation MRWT block is repeated at each rising edge triggering to the Trg input.

Modbus RTU/TCP Slave Addresses Modbus RTU/TCP Master Addresses

0. Address 4008. Address

1. Address 4009. Address

2. Address 4010. Address

Note: In this example, for MRWT block only 3 addresses have been opened, that's why 4011

Modbus Addressed block has not read any address.

261 Distributed Control Systems / Programming Manual

10.12.8 Writing to Consecutive Addresses

With Modbus Read / Write Table (MRWT) can be written to another Modbus RTU / TCP Slave's

consecutive sequential writeable (W or R/W) variables.

In the above example, the value of 3 analog variables with MRWT block is written to Modbus

RTU / TCP Slave. For this reason, 3 field have been opened in the MRWT block for Analog

variables. (Each Analog variable is equal to 2 Word variables.)

262 Distributed Control Systems / Programming Manual

The registrar address on the MRWT blog is the starting address for writing on the Modbus

RTU/TCP Slave device.

Register Count in the MRWT block is defined for how many addresses would be written by

MRWT block to Slave. (In the above example, it is selected to write 3 Analog addresses from

the 0. address. 0., 2. and 4. Addresses)

From the analog input block connected to the tab input of the MRWT block, data on 3 analog

blocks with sequential sequential address will be written to Modbus RTU / TCP Slave. (6000.

Modbus Addressable AI0 block, 6002. Modbus Addressed AQ0 block, 6004. Modbus

Addressable Analog Register block.)

In the MRWT block, the function type should be selected according to the type of writing

function and the variable typ3. (Write Multiple Registers, Write Multiple Coils.)

Write operation The MRWT block is repeated at each rising edge trigger that is input to input

Trg.

Modbus RTU/TCP Slave Addresses Modbus RTU/TCP Master Addresses

Analog Address 0 Analog Address 6000

Analog Address 2 Analog Address 6002

Analog Adrdess 4 Analog Address 6004

263 Distributed Control Systems / Programming Manual

10.12.9 Writing to Successive Addresses from a Table

With Modbus Read / Write Table (MRWT) can be written to another Modbus RTU / TCP Slave's

consecutive sequential writeable (W or R/W) variables.

In the above example, the area for 3 long variables is opened in the Long Table block that

connects to the Tab input of the MRWT block. (Each Long variable is equal to 2 Word

variables.)

The register address on the MRWT blog is the starting address for writing on the Modbus

RTU/TCP Slave device.

264 Distributed Control Systems / Programming Manual

Register Count in the MRWT block is defined for how many addresses would be written by

MRWT block to Slave. (In the above example, it can be written from 0. to 5. Addresses. 0, 1, 2,

3, 4, 5. Addresses)

In every minute a sample is taken from the Analog Input (AI0) block connected to the In input of

the Long Table block connected to the “Tab” input of the MRWT block. This samples are written

in 3 long fields in the long table. The values in the table are written to a Modbus RTU / TCP

Slave per second.

In the MRWT block, the function type should be selected according to the type of writing

function and the variable typ3. (Write Multiple Registers, Write Multiple Coils.)

Write operation The MRWT block is repeated at each rising edge trigger that is input to input

Trg.

10.13 MODBUS STATUS BLOK

10.13.1 Connections

Efe: Efendi girişi

Sta: Connection Status

Rtu: Slave ID Girişi

10.13.2 Connection Explanations

Mas: Master input

Master input connection.

Rtu: Slave ID input

The ID of the device to which the connection status information will be read is entered.

Sta: Connection Status

This output is for connection status information.

265 Distributed Control Systems / Programming Manual

10.13.3 Custom Settings

Modbus Slave Address: The ID of the device in
which status information is to be received can
also be selected from the block.

10.13.4 Block Explanation

The status information of slave devices that read and write via Modbus Master blocks is read by

this block. The Modbus Status block reads the status information via the Modbus Master block

to which it is connected. The ID of the device to read status information can be defined from

Block Object Properties or Block second input (RTU ID input).

If the block output is 1, communication with the Modbus device at the entered slave address is

exist and is successful. If the block output is 0, there is no communication or response packets

with the Modbus device at the entered slave address.

The block output is updated when the corresponding slave sends a request to the device. If the

expected response from the slave device cannot be received during the defined timeout, the

status information is updated to 0 at the end of this timeout time.

266 Distributed Control Systems / Programming Manual

10.13.5 Sample Application

(1) (2)

In the sample; communication connection is inquired by Modbus Status block to Modbus

TCP/RTU Slaves'.

When there is a communication connection, the block output is set to 1. The block output is 0

when there is no communication connection.

267 Distributed Control Systems / Programming Manual

10.14 Example of 64-Bit Data Type Reading

Reading signed or unsigned 64-bit integer (int64/uint64) data over the Modbus RTU/TCP

protocol is required in applications such as high-resolution meters, time stamps, and large-scale

energy measurements. Mikrodev RTU devices can read such data using 4 consecutive 16-bit

Modbus registers (holding registers). However, this process requires a special configuration and

data merging operation.

64-bit (int64) data reading is not performed directly with a single block. Instead, the following

structure is used:

• 4 consecutive Modbus registers are read with the Modbus Read/Write Table (MOYT)

block.

• The 4 Word (8 bytes) of data read are sent to the Macro (MCR) block.

• The Macro block combines these 4 Words according to the BADC byte order to form a 64-

bit integer.

• The obtained value is transferred to other blocks or recorded.

Note: Mikrodev devices do not have a special “Modbus Reader” block that directly supports the

64-bit data type. Therefore, this process is performed with the combination of MOYT + MCR.

268 Distributed Control Systems / Programming Manual

10.14.1 Sample Application

269 Distributed Control Systems / Programming Manual

Modbus RTU ID: The value entered in the
block options, which indicates from which ID
the data will be taken.

Register Address: The register addresses to
be read in slave IDs are entered.

Number of Registers: The number of
registers to be read after the entered
register address.

Function: The function code by which the
data will be written is selected.

Byte Order: The byte order in which the data
will be entered is determined.

In the example above, an int64 value is created by reading 4 registers with consecutive Modbus

addresses starting from address 500 of the slave device with Modbus RTU ID:1.

Macro (MCR) Block Content

Explanation:

v0: 1st Word (lowest 16 bits)

v1: 2nd Word → shifted left by 16 bits (* 65536)

v2: 3rd Word → shifted left by 32 bits (* 4294967296)

v3: 4th Word → shifted left by 48 bits (* 281474976710656)

Total: v0 + v1 + v2 + v3 → 64-bit result

270 Distributed Control Systems / Programming Manual

The resulting 64-bit value is taken from the output #MCR0.

Macro in the Macro Block:

[v0=i0+0]
[v1=i1*65536]
[v2=i2*4294967296]
[v3=i3*281474976710656]
[v4=v0+v1]
[v5=v2+v3]
[o0=v5+v4]
[E]

271 Distributed Control Systems / Programming Manual

11 IEC DNP3 PROTOCOL BLOCKS

11.1 IEC101 SLAVE

11.1.1 Connections

Ser: Communication input

#I1010: Block number output

Tri: Block trigger input

Sta: Status Information output

Asd: Asdu address input

11.1.2 Connection Explanations

Ser: Communication input

Communication input.

Tri: Block trigger input

Block trigger input.

Asd: Asdu address input

The input that defines the asdu address.

#I1010: Block number output

The output of the block number

Sta: Status information output

The status information output

272 Distributed Control Systems / Programming Manual

11.1.3 Block Settings

Connection address: Link state address.

Asdu Address: ASDU state address.

Transmission type: Balanced or Unbalanced
protocol is selected.

Link address size: Select the number of the bytes
of link address.

Asdu Address size: How many bytes of the asdu
address will be selected.

COT size: The number of bytes of the Cause of
Transmission field is selected.

IOA Byte: The number of bytes of Information
Object Addresses is selected.

11.1.4 Block Explanation

By adding IEC101 block, The IEC 60870-5-101 slave is activated on the RTU.

TCP or Serialport block is added to IEC101block “ser” input.

To serve more than one server, IEC101 block must be added for each server.

.If The IEC101 Asdu address is set from outside not from the inside the block, The Asd enter is

used

273 Distributed Control Systems / Programming Manual

On the rising edge of the trigger, the periodically sending objects between IEC101 objects are

actively transmitted to the server by the periodic COT. Trigger input can be left blank.

274 Distributed Control Systems / Programming Manual

275 Distributed Control Systems / Programming Manual

11.2 DNP3 SLAVE

11.2.1 Connections

Ser: TCP Socket Input
#DNP30: Connection Status

Trg: Trigger Input

Q2: Not used.

Asd: Asdu Address Input

11.2.2 Connection Explanation

Ser: TCP Socket Input

The TCP server socket block, where the DNP3 protocol will run, is connected from this input.

Trg: Trigger Input

The trigger input for periodically send operation. Works as a rising edge.

Asd: Asdu Address Input

It is used as an ASDU address entry.

#DNP30: Connection Status

It is used to control the connection status between the master and the slave. DNP3 gives the

value 1 when the connection with the master is established.

276 Distributed Control Systems / Programming Manual

11.2.3 Block Settings

Local Address: Used to identfy the DNP3 slave

address.

11.2.4 Block Explanation

Adding a DNP3 Slave block to the project activates the DNP3 protocol on the RTU.

Serial Input: A TCP or Serial Port block is added to the serial input of the DNP3 block.

Note: To serve multiple servers, a DNP3 Slave block must be added to the telecontrol project

for each server.

Trg Input: On the rising edge of the trigger, selected objects with active periodic transmission

among the DNP3 objects are sent to the server with a Periodic Cause of Transmission (COT).

This input can be left empty if periodic transmission is not required.

Asd Input: If the DNP3 ASDU address needs to be configured externally instead of through

block-specific settings, the Asd input is used.

#DNP30 Output: It is used to control the connection status between the master and the slave.

DNP3 gives the value 1 when the connection with the master is established.

277 Distributed Control Systems / Programming Manual

When a DNP3 Slave block is added to the RTU logic project, the DNP3 protocol becomes active

on the RTU. The association of this protocol with the variables in the RTU is achieved through

the variable address table. Variables defined in this table ensure proper communication with the

master device.

Object 60 and Object 80 are critical elements of the DNP3 protocol and must be defined in the

variable address table to enable communication with the master device:

• Object 60: Enables the classification and retrieval of event and static data. This object

allows the master device to send queries targeting specific classes (Class 0, Class 1,

Class 2, Class 3) and retrieve only the relevant data.

• Object 80: Serves to monitor the internal status and diagnostic information of the device.

This object ensures control of diagnostic details such as the RTU’s health status and

communication state.

To define Object 60 and Object 80 variables, navigate to the variable address table. Inputs such

as tag names and starting addresses can be chosen arbitrarily.

278 Distributed Control Systems / Programming Manual

Note: If the `DeviceObj` (Object 60) and `ClassObj` (Object 80) variables are not defined in the

variable address table, communication between the DNP3 Master and Slave cannot be

established.

11.2.5 DNP3 Variable Adress Table Definitions

11.2.5.1 Variable Adress Table

To RTU logic project, DNP3 becomes active in the DNP3 protocol within the RTU with the

addition of the Slave Block to DNP3. Variables that in the RTU logic, The association of DNP3 is

provided in the variable address table.

11.2.5.2 Line Label Definition

A line tag can be defined for all blocks added to the telecontrol project. To associate protocol

addresses in the variable address table, the relevant blocks must have a defined line tag.

279 Distributed Control Systems / Programming Manual

11.2.6 Line Label Attribution

 Associating the protocol adresses with line labelss, The variable is provided from the menu by

pressing the “Add” button in the address table.

Alias: A special name is given that
defines this variable. The same name
cannot be used more than once.

Start Address: The address reserved for
this variable on master is written here.
(It is written as a Decimal value.)

Object Set No: Used in IEC104 protocol
definitions.

LineLabel: The block to be associated
with on the Telediagram is selected by
the line label.

Point Coint: It is calculated
automatically. It makes sense in tables.

Quality Register: Used in IEC104
protocol definitions.

Send Trig Block: If DNP3 data needs to
be sent with a trigger independent of
the block's trigger input, a trigger block
can be selected in this section. To
enable data transmission dependent
on this trigger, the "Periodic Send"
option in the block's specific settings
must not be checked.

280 Distributed Control Systems / Programming Manual

Protocol Type: Modbus, DNP3, IEC101,
IEC104 to choosing from among them.
The Object Type will change according
to the protocol type.

Object Type: The DNP3 object type is
selected. For detailed information,
refer to the object types section.

Object Static Variation: The static
variation in which the specified
variable will be sent by default is
selected. A value other than 0 must be
entered.

Object Event Variation: The event
variation in which the specified
variable will be sent by default is
selected. A value other than 0 must be
entered.

Object Class: The class information to
which the variable belongs is selected.
For detailed information, refer to the
object class section.

Send Periodically: This option
determines whether the variable will
be sent to the Master as a periodic
transmission when a rising edge signal
is sent to the trigger input of the DNP3
Slave block.

281 Distributed Control Systems / Programming Manual

Send Method: The action to be taken
when the value of the defined variable
changes is selected.
OnChange None: A value change does
not trigger transmission.
OnChange Level: Transmission is
triggered when the amount of change
defined in the "Change Value" is
reached.
OnChange Percentage: Transmission is
triggered when the percentage of
change defined in the "Change Value"
is reached.
OnChange Integral: Transmission is
triggered if the total changes of the
added object over a unit time exceed
the value defined in the "Change
Value." The unit is seconds. For
detailed information, refer to the Event
Mechanism section.

Change Value: The percentage, level,
or integral change value defined in the
"Send Method" is configured in this
section.

Description: This is the input for a
description. It can be left empty.

282 Distributed Control Systems / Programming Manual

11.2.7 DNP3 Object Class

The class structure in the DNP3 protocol enhances communication efficiency by grouping data

based on priority and categories. Data is organized into four main classes: Class 0, Class 1,

Class 2, and Class 3. These classes are defined according to the object classes specified in the

variable address table.

Class 0: This class is reserved for static (unchanging) data. Static data reflects the current

value of a variable in a device. For example, information like the current measurement value of

a sensor or the current position of a switch falls under Class 0. Class 0 data is typically low-

priority and is sent only when requested by the master. Points assigned to Class 0 do not report

events. Reading all static data types in a device is equivalent to reading Class 0.

Class 1: This class is used for high-priority event data. An event is triggered by a change in a

data point or another trigger condition. Class 1 events are considered more urgent compared to

other classes. Typically, high-priority information such as significant state changes or critical

alarms is assigned to this class. For instance, an intrusion detection event in a security system

could be reported as Class 1.

Class 2: This class is used for medium-priority event data. Class 2 events are less urgent than

Class 1 events but have higher priority than Class 3 events. Moderately critical state changes or

events are assigned to this class. For example, a warning signal from a device could be

reported as Class 2.

Class 3: This class is used for low-priority event data. Class 3 events have the lowest priority

among the classes. Routine events or less critical state changes are typically assigned to this

class. For example, a device measurement exceeding a predefined range might be reported as

Class 3.

Note: If you want to receive DNP3 data from the master device with the Unsolicited Enable

query, the relevant address must have a class definition other than 0. Unsolicited messages

cannot be sent to addresses with a class definition of 0. Therefore, the class structures of the

variables must be carefully defined to ensure correct transmission of critical or event-based

data.

283 Distributed Control Systems / Programming Manual

11.2.8 DNP3 Object Types

The DNP3 slave device responds to variation 0 commands for the object types listed below

using the static and event variations defined in the variable address table. These objects are

used to query and transmit change events or static states.

DNP3 Object Type

BinaryInput - Data Object 01 – Static Variation: 0

BinaryInputChange - Data Object 02 – Event Variation: 0

BinaryOutput - Data Object 10 – Static Variation: 0

AnalogInput- Data Object 30 – Static Variation: 0

AnalogInputChange- Data Object 32 – Event Variation: 0

AnalogOutput - Data Object 40 – Static Variation: 0

Note: The Binary Input Change and Analog Input Change object types are not defined in the

variable address table. Instead, the Binary Input and Analog Input object types are used for

change tracking. If the "send on change" feature is enabled for these objects, when a change

occurs in these variables, the DNP3 Slave device responds to the Master device's query

accordingly (Binary Input Change or Analog Input Change).

11.2.8.1 DNP3 Object Types in Reading Direction

According to the DNP3 protocol, when the master sends a Variation 0 query to the slave device,

the slave device responds only with the static variations defined in the variable address table. In

addition, when the master sends a query for a variable, for example, with variation 1, the slave

device responds with variation 1, regardless of whether the relevant variable is defined with a

different variation.

284 Distributed Control Systems / Programming Manual

Supported Variations of Binary Input Variables

DNP3 Object Type – BinaryInput(1)

Single Bit Binary Input
Data Object 01 – Static Variation 01

Binary Input With Status
Data Object 01 – Static Variation 02

DNP3 Object Type – BinaryInputChange(2)

Binary Input Change Without Time
Data Object 02 – Event Variation: 01

Binary Input Change With Time
Data Object 02 – Event Variation: 02

Binary Input Change With Relative Time
Data Object 02 - Event Variation: 03

Supported Variations of Binary Output Variables

DNP3 Object Type – BinaryOutput (10)

Binary Output
Data Object 10 – Static Variation: 01

Binary Output Status
Data Object 10 – Static Variation: 02

Supported Variations of Analog Input Variables

DNP3 Object Type – AnalogInput(30)

32-Bit Analog Input
Data Object 30 – Static Variation: 01

16-Bit Analog Input
Data Object 30 - Static Variation: 02

32-Bit Analog Input Without Flag
Data Object 30 - Static Variation: 03

16-Bit Analog Input Without Flag
Data Object 30 - Static Variation: 04

Short Floating Point Analog Input
Data Object 30 - Static Variation: 05

Long Floating Point Analog Input
Data Object 30 - Static Variation: 06

285 Distributed Control Systems / Programming Manual

DNP3 Object Type – AnalogInputChange(32)

32-Bit Analog Change Event Without Time
Data Object 32 – Event Variation: 01

16-Bit Change Event Without Time
Data Object 32 - Event Variation: 02

32-Bit Analog Change Event With Time
Data Object 32 - Event Variation: 03

16-Bit Analog Change Event With Time
Data Object 32 - Event Variation: 04

Short Floating Point Analog Change Event
Data Object 32 - Event Variation: 05

Long Floating Point Analog Change Event
Data Object 32 - Event Variation: 06

Short Floating Point Analog Change Event With Time
Data Object 32 - Event Variation: 07

Long Floating Point Analog Change Event With Time
Data Object 32 - Event Variation: 08

Supported Variations of Analog Output Variables

DNP3 Object Type – AnalogOutput(40)

32-Bit Analog Output Status
Data Object 40 – Static Variation: 01

16-Bit Analog Output Status
Data Object 40 - Static Variation: 02

Short Floating Point Analog Output Status
Data Object 40 - Static Variation: 03

Long Floating Point Analog Output Status
Data Object 40 - Static Variation: 04

Note: No variations other than those supported by the variables should be defined. The slave

device only supports the variations specified here. Therefore, using different variations may lead

to communication errors.

Note: Variation 0 is used by the master device to query the variations defined by default on the

slave device. Therefore, variation 0 should not be defined on the slave device.

286 Distributed Control Systems / Programming Manual

11.2.8.2 DNP3 Object Types in Control Direction

The object types supported in the control direction on the slave device are as follows:

DNP3 Object Type

Control Relay Output Block
Data Object 12 - Variation 01

32 Bit Analog Output Block
Data Object 41 - Variation 01

16 Bit Analog Output Block
Data Object 41 - Variation 02

Short Float Analog Output Block
Data Object 41 - Variation 03

There are 2 different control object types defined in the variable address table in the device.

These are Control Relay (12) and Control Analog (41) object types.

11.2.9 DNP3 Event Mechanism

11.2.9.1 Event Definition for DNP3 Objects

The Binary Input Change and Analog Input Change object types are not defined in the variable

address table. Instead, Binary Input and Analog Input object types are used for change tracking.

If the "send on change" feature is enabled for these objects, the DNP3 Slave device responds to

the Master device's query appropriately when a change occurs in these variables. This process

occurs only when the change is recorded as an event within the corresponding data class,

ensuring that only current or updated data is prioritized in communication.

In the variable address table, the "send on change" option is available for DNP3 objects. The

action to be performed when the value of the defined variable changes is selected through this

menu:

OnChange None: Value changes do not trigger a transmission.

OnChange Level: Transmission is triggered when the change reaches the amount defined in the

"Change Value."

OnChange Percentage: Transmission is triggered when the change reaches the percentage

defined in the "Change Value."

OnChange Integral: Transmission is triggered when the total of the changes within a unit time

exceeds the value defined in the "Change Value."

287 Distributed Control Systems / Programming Manual

The Change Value setting, together with the Send Method, configures the percentage, level, or

integral change value.

Example; If the transmission method for a DNP3 object defined in the variable address table is

set to "integral change" and the change amount is set to 10, the following behavior occurs:

If the change amount is 2, the transmission will occur after 5 seconds, calculated as

10/2(change value divided by the change amount).

If the change amount is 5, the transmission will occur after 2 seconds, calculated as 10/5. If the

change amount is 15, the transmission will trigger immediately since it exceeds the defined

change value.

This mechanism ensures efficient communication by sending only the necessary data based on

the configured conditions.

11.2.9.2 Instant Transmission of DNP3 Event Statuses

The DNP3 Slave device labels the conditions defined as "Send on Change" and the changes

detected as events. When a tagged event occurs:

If the connection between the slave and the master exists and the master is enabled to accept

unsolicited messages, the corresponding object is immediately transmitted as an unsolicited

message.

Note: Unsolicited sending is only performed if the master supports this feature and is set to

active.

Note: If you want to receive DNP3 data from the master device with the Unsolicited Enable

query, the relevant address must have a class definition other than 0. Unsolicited messages

cannot be sent for addresses with a class definition of 0.

288 Distributed Control Systems / Programming Manual

11.2.9.3 Event Statuses When There is No Connection with DNP3 Master

The RTU device labels the situations defined as send in change and the situations where

change is detected as events. This data is stored in the device as Class data. This class event

data stored in the memory can be read by the Master device with Class 1, Class 2 or Class 3

data read queries. If unsolisted sending is enabled, the RTU device automatically transmits this

data to the master. If there is no connection between the slave and the master, the RTU device

adds the class data to the event record memory and stores it to be sent when the connection is

reestablished.

Note: For the storage process, the Add to log-recording memory option must be selected from

the special settings of the DNP3 Slave block.

Note: If you want to send all class data stored in the log-recording memory to the master when

the connection is established, the Synchronize with DevNET option must be selected from the

special settings of the DNP3 Slave block.

Note: The values of objects that are selected as active for periodic sending between DNP3

objects are not perceived as events. In other words, periodic sendings are not added to the log-

recording memory when there is no connection.

289 Distributed Control Systems / Programming Manual

Events in DNP3 variables are transmitted via the DNP3 object types specified in the table

below:

DNP3 Object Type

Binary Input Change Without Time
Data Object 02 – Event Variation 01

Binary Input Change With Time
Data Object 02 - Event Variation 02

Binary Input Change With Relative Time
Data Object 02 - Event Variation: 03

32 Bit Analog Input Change Without Time
Data Object 32 - Event Variation 01

16 Bit Analog Input Change Without Time
Data Object 32 - Event Variation 02

32-Bit Analog Change Event With Time
Data Object 32 - Event Variation: 03

16-Bit Analog Change Event With Time
Data Object 32 - Event Variation: 04

Short Floating Point Analog Change Event
Data Object 32 - Event Variation: 05

Long Floating Point Analog Change Event
Data Object 32 - Event Variation: 06

Short Floating Point Analog Change Event With Time
Data Object 32 - Event Variation: 07

Long Floating Point Analog Change Event With Time
Data Object 32 - Event Variation: 08

290 Distributed Control Systems / Programming Manual

11.3 IEC 60870-5-104 SLAVE

11.3.1 Connections

Ser: TCP Socket Input

#I1040: Connection Status Output

Trg: Trigger Input

Out:

Asd: Asdu Address Input

11.3.2 Connection Explanations

Ser: TCP Socket Input

The TCP server socket block from which the IEC104 protocol will work is connected from this

input

Trg: Trigger Input

Trigger input for periodic sending. It works as a rising edge.

Asd: Asdu Address Input

The ASDU address is used as input.

#I1040: Connection Status Output

If there is an IEC104 Master connected to the IEC104 Slave block, this output will be 1.

291 Distributed Control Systems / Programming Manual

11.3.3 Block Settings

AsduAddress: The ASDU address of the
IEC104 Slave Block can be defined from this
section or from the ASDU input of the
IEC104 Slave block.

T0: TCP connection timeout period.

T1: Test APDU timeout period.

T2: Timeout period for Ack.

T3: Test frame sending time

K: The maximum allowable difference between
the sequence number in the received packet
and the number in the send status variable

W: ACK is sent after receiving W up to I Format

APDU

Group Count***: The number of Masters that

the device can establish connections with as an

IEC 104 Slave is specified here. This value can be

a maximum of 2 for RTU devices and a

maximum of 4 for DM devices.

292 Distributed Control Systems / Programming Manual

Max Client in Group**: The maximum number

of Slave connections that can be established to

an IEC 104 Master is specified here. (Currently

set to 5.)

Object Sets*: It is used to define multiple IEC

104 Slaves. Thanks to the value entered here,

IEC 104 objects can be assigned to different

Slave addresses. It is used in conjunction with

the 'Object Set No' in the Variable Address

Table. For more detailed information, please

refer to the Block Descriptions.

Add to log-record memory: If block values are

desired to be added to the event log memory

when there is no connection with the server, the

"Add to Log Memory" option should be

selected.

Sync with DevNET: If it is desired to send the

values of all blocks to the server when the

connection is established, this option should be

selected.

*This is valid for Telediagram version 18 and later.

**In Telediagram versions earlier than 18, these features are provided by sending special

commands through the Mikroterminal application.

***For devices with firmware version 19.09 and above, the Group Count value can be a

maximum of 4. (For older RTU versions, the maximum is 2.)

Note: As the Group Count value increases, the maximum number of objects that can be

defined in the variable address table decreases:

• Group Count = 1 → 500 objects

293 Distributed Control Systems / Programming Manual

• Group Count = 2 → 250 objects

• Group Count = 3 → 170 objects

• Group Count = 4 → 125 objects

11.3.4 Block Explanations

To enable the IEC104 protocol over RTU, you need to add an IEC104 Slave block to the

Telediagram project and connect the TCP Socket block to the "Ser" input of the IEC104 Slave

block. In the TCP Socket block settings, the TCP Socket Type should be selected as "Server"

and the listening port should be defined. To activate the TCP Socket block, the "Ena" input of the

TCP Socket block should be connected to the High Gate block.

If you want to serve multiple servers, you need to add an IEC104 Slave block for each server in

the Telediagram project.

The IEC104 ASDU address can be configured either from the block settings of the IEC104 Slave

block or from the "Asd" input of the IEC104 Slave block.

The values of the IEC104 objects that are selected for periodic transmission will be sent to the

server when a rising edge signal is received at the "Trg" input of the IEC104 Slave block. If there

is no data transmission through periodic or trigger-based methods, the trigger input can be left

unconnected.

If you want to open multiple IEC104 Slaves on the device, you should make the configuration

from the "object sets" section in the block settings of the IEC104 Slave block. This section is used

in conjunction with the variable address table. When defining IEC104 objects in the variable

address table, the "object set no" entered should correspond to the object sets value.

For example, if the "object sets" value in the block settings of the IEC104 Slave block is set to 1,

the "object set no" in the variable address table should be 0. (20=1)

If the "object sets" value is set to 2, the "object set no" in the variable address table should be 1.

(21=2)

And if the "object sets" value is set to 8, the "object set no" in the variable address table should

be 3. (23=8)

294 Distributed Control Systems / Programming Manual

11.3.5 Sample Application

Figure 1 IEC104 Slave Block Example FBD Project

295 Distributed Control Systems / Programming Manual

296 Distributed Control Systems / Programming Manual

297 Distributed Control Systems / Programming Manual

In the example application, three different IEC104 Slave blocks were defined for three

different listening ports. During the configuration, each IEC104 Slave block was assigned a

different "Object Sets" value.

298 Distributed Control Systems / Programming Manual

For listening port 2404, the "Object Sets" value of the IEC104 Slave block is specified as 1

in the block settings. Therefore, the corresponding "Object Set No" value in the variable

address table is entered as 0. (20=1)

For listening port 2405, the "Object Sets" value of the IEC104 Slave block is specified as 2

in the block settings. Therefore, the corresponding "Object Set No" value in the variable

address table is entered as 1. (21=2)

299 Distributed Control Systems / Programming Manual

300 Distributed Control Systems / Programming Manual

For listening port 2406, the "Object Sets" value of the IEC104 Slave block is specified as 8

in the block settings. Therefore, the corresponding "Object Set No" value in the variable

address table is entered as 3. (23=8)

IEC 104 objects have been defined in the variable address table. A TCP connection has been

established to the device, and online monitoring has been initiated.

301 Distributed Control Systems / Programming Manual

IEC104 Masters were opened for different listening ports through the Vinci application, and

the transmitted values were monitored.

302 Distributed Control Systems / Programming Manual

11.3.6 IEC104 Variable Address Table Definitions

11.3.6.1 Variable Address Table

With the addition of the IEC104 Slave Block to the Telediagram project, the IEC104 protocol

becomes active within the RTU.

The association of variables with IEC104 is provided through the variable address table in the

Telediagram project.

Note: For devices with firmware version 19.09 and above, the Group Count value can be a

maximum of 4. For older RTU versions, the maximum is 2. As the Group Count increases, the

maximum number of objects that can be defined in the variable address table decreases:

Group Count = 1 → 500 objects

Group Count = 2 → 250 objects

Group Count = 3 → 170 objects

Group Count = 4 → 125 objects

303 Distributed Control Systems / Programming Manual

11.3.6.2 Defining Line Labels

In the Telediagram software, automatic line label is provided for all blocks added to the

Telediagram project. To facilitate project readability, line label can be done based on the usage

locations of the blocks.

Note: When defining line label, ensure not to leave any spaces and avoid using Turkish

characters.

304 Distributed Control Systems / Programming Manual

11.3.6.3 Attaching a Line Label

Associating protocol tags with line labels, variable address is provided from the menu by pressing

"Add" button in the address table.

305 Distributed Control Systems / Programming Manual

Alias: A special name is given that defines this defined
variable.

Start Address: The address allocated for this variable
on SCADA is written here. (It is written as a decimal
value.)

Object Set No: It is used to define multiple IEC104
Slaves. Through this value, IEC104 objects can be
assigned to different Slave addresses. It is used in
conjunction with the "Object Sets" section in the block
settings of the IEC104 Slave block. For detailed
information, please refer to the "Block Descriptions"
section.

Line Label: The block to be associated on the
Telediagram is selected with the line label.

Point Count: Calculated automatically. It makes sense
on tables.

306 Distributed Control Systems / Programming Manual

Quality Register Block: Block entry to define Quality
Register. For detailed information, please refer to the
"Quality Register Block Settings" section.

Send Trig Block: If you want to send IEC104 data with
an independent trigger from the trigger input of the
block, the trigger block is selected from this section
and the periodic send option in the block special
settings must not be ticked in order to send trigger-
dependent data here.

Protocol Type: Modbus, Dnp3, IEC101, IEC104 are
selected. Object type will change according to
protocol type.

Object Type: IEC104 object type information selected.
For detailed information, please refer to the "Object
Types" section.

307 Distributed Control Systems / Programming Manual

Object Class: The class information to which the
variable belongs is selected.

Send Periodically: It is the selection of whether to
send periodic sending to SCADA in this variable when
the trigger is detected from the Trigger input on the
IEC104 Slave block.

Send Method: When the value of the defined variable
changes, the action to be taken is selected.

On Change None: The spin submission is not triggered.

On Change Level: When the amount defined in
“Change Value” changes, sending is triggered.

On Change Percentage: Sending is triggered when
there is a change in the percentage defined in “Change
Value”.

On Change Integral: If the accumulated change of the
added object within the unit time, defined by the
"Change Value," exceeds, the transmission is
triggered. The unit is in seconds. For detailed
information, please refer to the "IEC104 Event
Mechanism" section.

Change Value: Sets the percentage or level change
value together with the “Send method”.

Description: It is the description input.

308 Distributed Control Systems / Programming Manual

11.3.7 IEC104 Object Types

11.3.7.1 IEC104 Read Direction Object Types

IEC 104 Object Pe

1 (single-point) Binary, Word, Analog, Long

3 (double-point) Word, Analog, Long

5 (step position) -

7 (bitstring) -

9 (measured normalized value) Binary, Word, Analog, Long

11 (measured scaled value) -

13 (measured short floating point) Binary, Word, Analog, Long

15 (integrated totals) -

20 (packed single-point) -

21 (normalized value without quality
descriptor)

-

30 (single-point information with time tag) Binary, Word, Analog, Long

31 (double-point information with time tag) Word, Analog, Long

32 (step position information with time tag) -

33 (bitstring of 32 bit with time tag) -

34 (measured normalized value with time
tag)

Binary, Word, Analog, Long

35 (measured scaled value with time tag) -

36 (measured short floating point number
with time tag)

Binary, Word, Analog, Long

37 (integrated totals with time tag) -

38 (event of protection equipment with
time tag)

-

39 -

40 -

309 Distributed Control Systems / Programming Manual

11.3.7.2 IEC104 Object Types in Control Direction

The write variable is also automatically created for each block matched with the read type.

Variable types that can be accessed as writing to defined read objects are as follows:

Selected for reading
IEC 104 Object Type

IEC 104 Object Type
That can be accessed for writing to the same

data point

1 (single-point) 45 (single command)

58 (single command with time tag)

3 (double-point) 46 (double command)

59 (double command with time tag)

13 (measured short floating point) 50 (set point command, short floating point)

63 (set point command, short floating-

point number with time tag)

30 (single-point information with time tag) 45 (single command)
58 (single command with time tag)

31 (double-point information with time
tag)

46 (double command)
59 (double command with time tag)

36 (measured short floating point number with time
tag)

50 (set point command, short floating point)

63 (set point command, short floating-
point number with time tag)

310 Distributed Control Systems / Programming Manual

11.3.8 Quality Register Block Settings

Quality Descriptor (QDS) bits and accordingly Quality Register Block Settings are supported in

our devices. Quality Descriptor bit definitions; OV, BL, SB, NT, IV, CY, CA, EI. As it is known,

the use of QDS varies according to the defined object types. The Quality Descriptor (QDS)

identification table is shown below.

Status

/ QDS

OV CY CA EI BL SB NT IV

 overflow

quality

flag

carry

flag

adjusted

flag

elapsed

flag

blocked

quality

flag

substituted

quality flag

topical

quality

flag

invalid

quality

flag

1 overflow carry counter

was

adjusted

elapsed

time not

valid

blocked substituted not

topical

invalid

0 no

overflow

no

carry

counter

was not

adjusted

elapsed

time

valid

not

blocked

not

substituted

topical valid

The QDS values to be used are created with the Bit Combination Block and defined by the

Quality Register Block setting during the IEC 104 association in the variable addresses section.

For example, we will define the reading value with the IEC 104 protocol. We select 36 –

measured short floating point number with time tag, as the reading object type. We will define

QDS values for Quality Register Block definition. For this, the QDS bit definition is as follows; It

should contain 0.bit OV, 4.bit BL, 5.bit SB, 6.bit NT, 7.bit IV. We can define Bit Combining Block

as Quality Register Block.

311 Distributed Control Systems / Programming Manual

11.3.9 Command Send Settings

It supports Single Command, Double Command and Set Point Command for appropriate object

types in IEC 104 protocol. Object types command types mapping is shown in the Object Types

Table. The settings are as follows; Depending on the object type, the options appear

automatically in the selected IEC 104 protocol settings during line label association. For

example, when Object type 45 (Single Command) is selected, options for parameter settings

become active as seen in Figure 6. A register is selected for either Short Pulse Duration or Long

Pulse Duration values. It should be noted that the entered value will be treated as ms.

The Execution Method is also selected from the list. The Execution Method is of 2 types.

Execute Only is selected if the operation is desired to be performed with a single command. If 2

different confirmation states are desired, Select Before Execute is selected. For example, the

Select Before Execute option can be used for transactions that require confirmation with 2

different commands. For this, the Select command must be sent first and then the Execute

command.

312 Distributed Control Systems / Programming Manual

11.3.10 IEC 104 Event Mechanism

The variable address table has a send on exchange selection for IEC 104 objects. The selection

of the action to be taken when the value of the variable defined in the variable address table

changes is determined by the send method defined in the variable address table. The send

method is used in conjunction with the change value section.

On Change None: The spin submission is not triggered.

On Change Level: When the amount defined in “Change Value” changes, the sending is

triggered.

On Change Percentage: Sending is triggered when there is a change in the percentage defined

in “Change Value”.

On Change Integral: If the accumulated change of the added object within the unit time, defined

by the "Change Value," exceeds, the transmission is triggered.

The "Change Value" in conjunction with the "Send Method" sets the percentage, level, and

integral change value.

For example, if the send method for the IEC104 object defined in the variable address table is

set to "Integral Change" and the change value is set to 10:

When the change amount of the defined variable is 2 (the difference between the current value

and the previous value of the defined variable), the transmission will be triggered after 5

seconds (10 divided by 2, based on the change value entered in the variable address table).

313 Distributed Control Systems / Programming Manual

When the change amount of the defined variable is 5, the transmission will be triggered after 2

seconds (10 divided by 5).

When the change amount of the defined variable is 15, the transmission will be triggered

immediately as it exceeds the change value entered in the variable address table.

The RTU device tags the statuses that are send on change and change detected as events and

assigns a time tag to the event. In case of a tagged event, if there is a connection with the

server, the relevant object is transmitted immediately as COT 0x03 Spontaneous.

If there is no connection with the server, the device is added to the event log memory and

stored for sending when the server connection is established again. For storage, the option

"Add to log-record memory" must be selected in the IEC104 Slave block settings.

Note: If all tags are to be sent to the server when the connection is established, the Sync with

DevNET option must be selected in the IEC104 Slave block settings.

Note: The values of selected objects with periodic sending between IEC104 objects are not

detected as events. That is, periodic submissions are not added to the log memory when there

is no connection.

The event logging parameter AT+EVENTLOG=4 should be sent via the microterminal to

increase the number of events added to the log memory to 10000, and the device should be

reset after the parameter is set.

If this parameter is not set, the default number of events will be 512.

Note: The AT+EVENTLOG parameter can also be changed via special Modbus 160 address.

11.3.11 IEC104 Redundancy Group Specification

Note: The settings described below are valid for Telediagram version before 18.

For version 18 and later, the adjustments are made through the block settings of the IEC104

Slave Block in Mikroterminal.

Mikrodev RTU can connect with IEC 104 Master as IEC 104 Slave. The number of Master IPs

to be connected to this must be defined to the device with the AT command and via the IEC104

Slave block.

For Telediagram version before 18:

The Mikroterminal application opens, from the special command entry section.

314 Distributed Control Systems / Programming Manual

The command AT+OPTIONS=7,<NUMBER OF MASTER IP TO CONNECT> is sent.

For example, if Edaş has two different server IPs, this command would be as follows:

AT+OPTIONS=7,2

>> AT+OPTIONS=7,2 Write Commad

OPTIONS=OK

>> AT+OPTIONS=7,? Read Command

OPTIONS=2

After entering this parameter, the device must be reset. AT+RESET=1

Note: The maximum number of Masters that the IEC104 Slave block can connect to is 2 for

RTU series devices and 4 for DM series devices.

For Telediagram version 18 and later, please refer to the "Block Settings" section for

Redundancy Group definition.

315 Distributed Control Systems / Programming Manual

11.3.12 Ability to Edit the Analog Threshold Value Retained in the Log

Recording Memory

While there is no connection, changes can be made on the threshold values of the analog

values kept in the log memory.

The Mikroterminal application opens, will be sent from the custom command line

AT+OPTION=8,<ANALOG EVENT MULTIPLIER>

analog event multiplier on the command line, analog log recorded when there is no connection,

it allows to operate on the threshold values of the values. Values written here are from 0 if set

differently, when there is no connection, the event threshold is multiplied by the coefficient here.

For example;

If AT+OPTION=8.0, analog events are not added to the log memory if there is no connection.

If AT+OPTION=8.1, it records the change in the log memory as much as the value entered in

the variable table.

If AT+OPTION=8.10, a change that is 10 times larger than the value entered in the variable

table will also be recorded in the log memory.

>> AT+OPTIONS=8,10 Write Command

OPTIONS=OK

>> AT+OPTIONS=8,? Read Command

OPTIONS=10

After entering this parameter, the device must be reset. AT+RESET=1

Note: The threshold value entered here applies to all defined IEC104 Slaves in the project.

316 Distributed Control Systems / Programming Manual

11.3.13 IEC104 Connection Information Learning Command

IEC104 connection information can be learned with AT command.

For Telediagram version before 18:

The Mikroterminal application opens, from the custom command input

The command AT+COMSTATUS=iec104 is sent.

IEC104 redundancy group number =2 command query example when there is no selected

connection;

>> AT+COMSTATUS=iec104

IEC104 CLIENT GROUP[0]:00000000

 isDataTransStarted:0

 NumofActiveConnections:0

 MaxNumberOfEvents:256

 RefInstance:200111b8

 EventItems:1000c800

 ObjMap:10005ab0

 connection[0]:00000000

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

IEC104 CLIENT GROUP[1]:00000000

 isDataTransStarted:0

317 Distributed Control Systems / Programming Manual

 NumofActiveConnections:0

 MaxNumberOfEvents:256

 RefInstance:200115f8

 EventItems:1000dc00

 ObjMap:100064f4

 connection[0]:00000000

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

COMSTATUS=

IEC104 redundancy group number =2 selected, command query example when there is only

one connection;

>> AT+COMSTATUS=iec104

IEC104 CLIENT GROUP[0]:4d0aa8c0

 isDataTransStarted:1

 NumofActiveConnections:1

 MaxNumberOfEvents:256

 RefInstance:2000f4c8

 EventItems:1000c800

 ObjMap:1000518c

 connection[0]:20010b30

318 Distributed Control Systems / Programming Manual

 DataTransStarted: 1

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

IEC104 CLIENT GROUP[1]:00000000

 isDataTransStarted:0

 NumofActiveConnections:0

 MaxNumberOfEvents:256

 RefInstance:2000f908

 EventItems:1000dc00

 ObjMap:100052ac

 connection[0]:00000000

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

COMSTATUS=

319 Distributed Control Systems / Programming Manual

For Telediagram version 18 and later:

The Mikroterminal application opens, from the custom command input

The command AT+COMSTATUS=iec104,<block number> is sent.

The block number specified on the command line is the block number of the IEC104 Slave

block from which the connection information is to be retrieved.

IEC104 redundancy group number =2 command query example when there is no selected

connection;

>> AT+COMSTATUS=iec104,2

IEC104 CLIENT GROUP[0]:d20aa8c0

 isDataTransStarted:0

 NumofActiveConnections:0

 MaxNumberOfEvents:85

 RefInstance:200100d0

 EventItems:1000c800

 ObjMap:10005134

 connection[0]:00000000

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

IEC104 CLIENT GROUP[1]:390aa8c0

 isDataTransStarted:0

 NumofActiveConnections:0

 MaxNumberOfEvents:85

 RefInstance:20010518

 EventItems:1000cea4

 ObjMap:1000518c

 connection[0]:00000000

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

320 Distributed Control Systems / Programming Manual

 connection[4]:00000000

COMSTATUS=

321 Distributed Control Systems / Programming Manual

IEC104 redundancy group number =2 selected, command query example when there is only

one connection;

>> AT+COMSTATUS=iec104,2

IEC104 CLIENT GROUP[0]:d20aa8c0

 isDataTransStarted:1

 NumofActiveConnections:1

 MaxNumberOfEvents:85

 RefInstance:200100d0

 EventItems:1000c800

 ObjMap:10005134

 connection[0]:20012bc0

 DataTransStarted: 1

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

IEC104 CLIENT GROUP[1]:390aa8c0

 isDataTransStarted:0

 NumofActiveConnections:0

 MaxNumberOfEvents:85

 RefInstance:20010518

 EventItems:1000cea4

 ObjMap:1000518c

 connection[0]:00000000

 connection[1]:00000000

 connection[2]:00000000

 connection[3]:00000000

 connection[4]:00000000

COMSTATUS=

322 Distributed Control Systems / Programming Manual

11.3.14 Command to Learn IEC104 Master IPs Connected to TCP Socket

Block

With AT command, IEC104 Master IPs connected to TCP Socket block can be learned.

The Mikroterminal application is opened, from the special command entry or from the command

line that says AT+STATUS= in the Socket Status section.

The AT+SOCKET=<TCP Socket Block Number> command is sent.

Example of IEC104 Master IP Query connected to TCP Socket block with 4 block numbers;

>> AT+SOCKET=4

Ip: 172.21.1.1, Port: 65063, Status: 2

Ip: 172.21.1.1, Port: 65514, Status: 3

Ip: 172.21.1.2, Port: 46076, Status: 2

Ip: 172.21.1.2, Port: 45799, Status: 2

323 Distributed Control Systems / Programming Manual

>> AT+COMSTATUS=iec104

IEC104 CLIENT GROUP[0]:020115ac

 isDataTransStarted:1

 NumofActiveConnections:2

 MaxNumberOfEvents:256

 RefInstance:200110b0

 EventItems:1000c800

 ObjMap:10005ab0

 connection[0]:20014b78

 DataTransStarted: 1

 connection[1]:00000000

 connection[2]:20013430

 DataTransStarted: 0

 connection[3]:00000000

 connection[4]:00000000

IEC104 CLIENT GROUP[1]:010115ac

 isDataTransStarted:1

 NumofActiveConnections:2

 MaxNumberOfEvents:256

 RefInstance:200114f0

 EventItems:1000c900

 ObjMap:100064f4

 connection[0]:20013838

 DataTransStarted: 0

324 Distributed Control Systems / Programming Manual

 connection[1]:00000000

 connection[2]:20014770

 DataTransStarted: 1

 connection[3]:00000000

 connection[4]:00000000

COMSTATUS=

325 Distributed Control Systems / Programming Manual

12 MQTT BLOCKS

12.1 MQTT Config Block

12.1.1 Connections

Soc: TCP Socket entry

#Mqtt0: : Block output

Trg: Block trigger input

#Sta: Communication status
output

#Pub: Publish timeout output

12.1.2 Connection Explanations

Soc: TCP Socket entry

It is used for TCP Socket block connection. Mqtt Config block cannot be used without TCP

Socket block.

Trg: Block trigger input

When periodic data transfer is desired, a trigger should be given to the mqtt config block from

this input. If this entry is left blank, data is transmitted according to other specified conditions.

#Mqtt0: Block output

Output showing the connection status. The information from this output is as follows;

 0: TCP Disconnected

 1: TCP Connecting

 2: MQTT Connecting

 3: MQTT Connected

#Sta: Communication status output

Output showing the communication status. The information from this output means:

 0: MQTT Send Conn Pack

 1: MQTT Idle Status

 2: MQTT Subscribe Status

326 Distributed Control Systems / Programming Manual

 3: MQTT Publish Status

#Pub: Publish timeout output

Output showing Publish timeout

12.1.3 Block Settings

Client Id: The field where the device is manually given
an ID for the broker connection.

User Name: The field where the device is named for
the broker connection.

Password: Password field entered in the device for
the broker connection.

Keep Alive: If the connection between the broker and
the Publisher is lost, the waiting time before
reconnecting.

Clean Session: If selected, messages will be broadcast
if there is communication between the device and the
broker, otherwise the information recorded in
communication interruptions will not be sent.

Use Device Serial as User Name: If selected, the serial
number of the device is used as the device username.

SSL Enabled: It is marked to make the connection with
SSL. (Only active in DM Series.)

12.1.4 Block Explanation

The output of the TCP Socket block is connected to the Soc input of the Mqtt Config block.

The special settings of the TCP Socket block should be made for mqtt connection as

follows;

• TCP Client should be selected as the socket type,

• The mqtt server IP to be connected to the Server IP section must be entered,

327 Distributed Control Systems / Programming Manual

• Mqtt server port information should be entered in the Server Port Section,

• As for the media type, Ethernet, GSM or WI-FI can be selected according to the

characteristics of the mikrodev device used.

328 Distributed Control Systems / Programming Manual

12.2 MQTT Table

The table where all MQTT-related adjustments are made can be accessed from the

Projects/MQTT Table tab.

329 Distributed Control Systems / Programming Manual

12.2.1 Topics to Publish

In this table, the Publish topic is entered to publish the data to the broker. The topic name is

entered on the screen that appears by pressing the Add Topic button in the table. Block

definitions where you can enable/disable Qos, Retain, Last Will, Payload settings, send on

exchange and periodically send options are also made on this page.

Definitions;

• Topic Name: The field where the topics you will send the messages are determined.

• QoS: Quality of Service refers to the agreement between the sender of a message and the

receiver of the message. The QoS levels are as follows;

o QoS 0: Minimum data transfer is ensured. At this level, each message is forwarded to a

subscriber and no confirmation is received that the message has arrived.

o QoS 1: The broker tries to transmit the message and waits for an acknowledgment

response from the subscriber, if no confirmation is received within a specified time frame,

the message is sent again.

o QoS 2: The broker receives two acknowledgments to ensure that the subscriber receives

the message and only once.

• Retain: If this option is checked, if the connection between the broker and the subscriber is

broken, the last value will be saved in memory.

330 Distributed Control Systems / Programming Manual

• Is Last Will Topic: Last will topic. If a topic is created and this option is checked, the message

under this topic will be forwarded to the subscribers when the device is disconnected from the

broker.

• Payload Type: It is determined in which format the message content will be sent. Subscriber

interprets incoming messages with this information. “MJson v1” can be selected if a time

stamp is desired to be added to the sent messages.

• On Change Send Enable Block: Block selection added in the diagram to enable or disable

the sending feature of the created topic on change.

• Periodic Send Enable Block: Block selection added in the diagram to enable or disable the

periodic sending feature of the created topic.

12.2.1.1 Publish Blocks for Topic

In this table, the blocks to be published for the relevant Topic are selected. After clicking the

topic in the Publish to topic table, the Add Entry button becomes active and by pressing this

button, the block to be published in the project is selected. How to transmit the data can also be

selected from the screen.

331 Distributed Control Systems / Programming Manual

Definitions;

• Select Block for Subscribe on Topic: The area where the block that you want to send as a

message in your project is selected.

• Send On Change: Send selection field on exchange

o On Level Change: Send when there is a change in the value specified in Change

Value, if 0 is written, it will be sent in every change.

o On Percent Change: Send when there is a percentage change of value specified in

Change Value, for example 10%.

• Change Value: Change amount input field.

• Send Periodcally: If checked, a message is sent every time a trigger comes to the trg input of

the mqtt config block.

• Select Block for Quality Value: The block in which the Quality value included in the message

content is selected in MJson v1 payload type.

• Select Trigger Block: Apart from change or periodicity, we can send the message by triggering

the block we will specify here.

332 Distributed Control Systems / Programming Manual

Note: Blocks used in messages; It can be sent and received with the block number (B:3006)

under the block, or it can be added to the messages with line tags (word_publish_ch). This

selection is made under the Mqtt Format tab in the block properties.

• Message that will appear if View and Set is selected;

• The message that will appear if No View is selected;

12.2.1.2 Identifying Labels from String Table

If long expressions are to be used in MQTT format for the selected label definitions, a text table

can be used. This helps to avoid confusion in PLC projects. For example, if you want to send

the expression "A_region_fault_resolved" as a line definition in MQTT format, you can use a

string table.

It should be written as shown in Figure 12. This will require more space in PLC projects. To

avoid this issue, the string expression to be sent via MQTT can be entered into a text table. For

this:

• Select "Mqtt format view and set";

• Enter the expression $$[string offset] into the line label definition, with the string offset

part corresponding to the relevant string offset of the text table.

• Enter the expression you want to write into the string table.

333 Distributed Control Systems / Programming Manual

Note: The feature of defining line labels via string offset described above is valid as of firmware

version 19.01.

334 Distributed Control Systems / Programming Manual

12.2.2 Subscribe to Topic

In this table, the relevant subscribe topic is entered to send data from the broker to the device.

Definitions;

• Subscribe Topic Name: Enter the name of the topic to be subscribed to.

• QoS: Service quality level is selected.

• Parse Format: Select the format in which the messages will be parsed.

335 Distributed Control Systems / Programming Manual

12.2.2.1 Subscribed Block Values for Topic

From this screen, the blocks to be associated for the subscribe topic are added. To use line

tags, mqtt format should be selected as view and set from the special settings of the relevant

block.

12.2.3 Special Applications

12.2.3.1 Ubidots

When you want to use Mikrodev PLC with ubidots mqtt, the following steps should be followed

in addition to the settings described above;

1. From the Mqtt Config block custom settings, Ubidots ID should be entered in the Client Id

section and the Token Key of the device created in Ubidots should be entered in the Username

section.

2. Publish Topic: Enter as /v1.6/devices/<Device Name>. There is no need to define variables in

the ubidots calculation for the blocks to be associated. With the first sent data, the variables are

created automatically by Ubidots. The data is read on the Ubidots server with the block number

or line tag.

3. Subscribe Topic: Entered as /v1.6/devices/<Device Name>/<Value Name>. A separate

connection must be defined for each data to be subscribed. Data must be defined in the Ubidots

environment. If the line tag is to be used, the variable created in Ubidots should have the same

name as the line tag, if the line tag is to be transmitted only with the block number, the variable

with the same name as the block number should be defined in the ubidots environment.

336 Distributed Control Systems / Programming Manual

12.2.4 Example Applications

12.2.4.1 Topic Publish

General Configuration;

After the project is created, the diagram is designed as in the figure, the mqtt formats of word

and analog registers are selected as view and set.

Send On Change;

Follow Projects > MQTT Table >Topics to Publish > Add Topic.

337 Distributed Control Systems / Programming Manual

Select the Topic name, enter the High gate we have prepared in the diagram for the OnChange

Send Enable Block, and click add.

338 Distributed Control Systems / Programming Manual

Then, from the Publish Blocks for Topic section in a subtable, click to the Add Entry.

Select the block in the diagram that you want to broadcast as a message to the Select Block for

Subscribe on Topic section.

In the SendOn Change section, On Level Change is selected and Change Value is set to 0 so

that it can send a message every time the value changes. Click on Add and continue.

The project is loaded on the device and online monitoring is opened.

Subscribe to the topic opened with a program such as MQTTBox. After watching the mqtt config

block value of 3 in online monitoring in the Mikrodiagram, when the value of the register is

changed, it is seen that the value is published.

339 Distributed Control Systems / Programming Manual

340 Distributed Control Systems / Programming Manual

Periodic Send;

In addition to the configuration sent in the change, a real time pulse generator is added to the

trg input of the mqtt config block,

Real time pulse generator is set for 5 seconds to broadcast a message periodically every 5

seconds and the created topic is changed as follows. OnChange Enable Block= NULL and Set

the High gate in the Periodic Send Enable Block diagram, In the Select Block for Subscribe on

Topic section, select SendOn Change= None and click Send Periodically.

341 Distributed Control Systems / Programming Manual

The project is loaded back to the device and incoming messages are observed.

342 Distributed Control Systems / Programming Manual

343 Distributed Control Systems / Programming Manual

Sending Values Using Text Table;

In addition to the periodically sent configuration, add one more Word register and select the

"MQTT format view and set" option.

Since the expression $$[2] is present in the line label definition, the string expression to be sent

should be entered at the 2nd offset of the text table.

344 Distributed Control Systems / Programming Manual

In this example, the "send on level change" option will be used.

The "topic to publish" section of the MQTT Table is defined as follows:

345 Distributed Control Systems / Programming Manual

The project is reloaded onto the device, and the incoming messages are monitored.

346 Distributed Control Systems / Programming Manual

12.2.4.2 Subscribe Topic

General Configuration;

After the project is created, the diagram is designed as in the figure, the mqtt formats of the

word and analog registers and the relay output are selected as view and set.

Follow Projects > MQTT Table >Topics to Subscribe > Add Topic.

347 Distributed Control Systems / Programming Manual

Enter the topic name and click Add. Then, the add entry is clicked from the Publish Blocks for

Topic section in a subtable.

Here, the block to which the subscribed value will be transferred is selected.

348 Distributed Control Systems / Programming Manual

After all blocks to be subscribed are determined, the project is loaded into the device.

When the message is published to the test2 topic with the above format, the final state of the

variables is as follows;

349 Distributed Control Systems / Programming Manual

12.2.5 Setting Up MQTT Connestion With SSL

Secure Sockets Layer (SSL) and Transport Layer security (TLS) are protocols that provide

secure communications over a computer network or link. SSL/TLS provides data encryption,

data integrity and authentication.

“SSL Enabled” option in block special settings of Mqtt Config Block; It provides secure MQTT

connection with SSL Certificate. This option only active in DM Series.

In order to use this feature, an SSL Certificate must be uploaded on the device and the "SSL

Enabled" option of the Mqtt Config block must be checked.

350 Distributed Control Systems / Programming Manual

12.2.5.1 Uploading SSL Certificate File to Device

The SSL Certificate file can be uploaded on the device in two ways.

• SSL Certificate file can be uploaded via Web Server. For this, the following instructions are

followed.

i. Login to the Web Server interface as an admin.

ii. Go to the Upload tab in the Web Server left sidebar.

iii. Click "Choose file" in the SSL Certificate Update section and select the SSL file you

want to upload. Click "Upload" in the bottom right.

The certificate will be successfully installed on the device.

• SSL Certificate file can be installed via command prompt. For this, the following instructions

are followed.

i. Change the certificate filename to combinet.crt

ii. Go to the windows command line.

iii. scp combined.crt root@<Cihaz IP>:/root //enter the command.

iv. After entering the command, it will ask for password, type your SSH password.

The certificate will be successfully installed on the device.

351 Distributed Control Systems / Programming Manual

13 SNMP PROTOCOL BLOCKS

13.1 SNMP AGENT BLOCK

13.1.1 Connections

Lis: Listen port

#SNAg0: Block output

Err: Error output

13.1.2 Connection Explanations

Lis: Listen port

#SNAg0: Block output

Err: Error output

352 Distributed Control Systems / Programming Manual

13.1.3 Block Settings

UDP Listen Port: Number of listen port, SNMP
default is 161.

Read Community: It works like username and
password. Should be same on the manager.

Write Community: It works like username and
password. Should be same on the manager.

353 Distributed Control Systems / Programming Manual

13.2 SNMP Trap Block

13.2.1 Connection

Inp: Input value input

#SnTr0: Block output

Thr: Threshold value input

13.2.2 Connection Explanations

Inp: Input value

Thr: Threshold value input

#SnTr0: Block output

354 Distributed Control Systems / Programming Manual

13.2.3 Block Settings

SNMP Manager IP: The manager’s IP address.

SNMP Manager Port: Port number of manager.

Alarm Control: Conditions of send data.

Threshold Value: Input threshold value.

13.2.4 Block Explanation

• Alarm Control: Conditions of send data;

o Greater Than: If the input value is greater than the threshold value, data is sent.

o Smaller Than: If the input value is smaller than the threshold value, data is sent.

o Level Change: If the input value changes by the threshold value, data is sent.

o Percent Change: If the input value changes by the %threshold, data is sent.

355 Distributed Control Systems / Programming Manual

This technology, called Simple Network Management Protocol, is designed to control units on

computer networks as they grow. Various information from the temperature on the device to the

users connected to the device, from the internet connection speed to the system operating time

are kept in the tree structure defined in SNMP.

The components that make up SNMP are;

• Agent application: The name given to the application that runs the SNMP service on the

device and saves the necessary information and transfers it to the administrator unit or applies

the change from the administrator unit to the device.

• Admin application: The application that receives the information needed from the agent

application and displays it to the user and sends the values that the user wants to change to the

device.

• Network Management System (NMS): It is the name given to the application that runs in

the administrative unit and provides monitoring and management of all devices connected to a

network.

Mikrodev products work as SNMP Agent application.

SNMP Management Information Units (MIBs): MIBs are collections of information stored in a

hierarchical structure. To reach the value of a particular variable in SNMP, the relevant unit of

this universally determined collection is used. For example, for the device description assigned

by the manufacturer of a device, it is necessary to access the information in the 1.3.6.1.2.1.2

unit.

356 Distributed Control Systems / Programming Manual

13.2.5 OID CALCULATION

The query to be sent to the agent device by the manager in the SNMP protocol should be in the

following structure;

.1.3.6.1.2.1.Block Type.Block Number

The block type can be the following values;

• 1: Bool

• 2: Word

• 3: Float

• 4: Long

The block number should not be written as in the Microdiagram, but should be converted to the

following format;

Block No: 3004 >> 30*100+4 = 30.4

Block No: 3000 >> 30*100+0 = 30.0

Block No: 6000 >> 60*100+0 = 60.0

357 Distributed Control Systems / Programming Manual

13.2.6 Sample Application

13.2.6.1 SNMP Agent Sample Application

An SNMP Agent block and Word, binary, long, analog registers are added to the Project as in the Figure.

358 Distributed Control Systems / Programming Manual

In Figure, the OID query that the manager will send to get the values of the registers in the

project should be as follows;

Binary register with Block Number 2: .1.3.6.1.2.1.1.0.2

Word register with Block Number 3000: .1.3.6.1.2.1.2.30.0

Analog register with Block Number 5000: .1.3.6.1.2.1.3.50.0

Long register with Block Number 6000: .1.3.6.1.2.1.4.60.0

MIB Browser program can be used as manager. After the IP and port settings are made, if the

above queries are sent from the OID section, the values of the registers will appear as in the

Figure.

359 Distributed Control Systems / Programming Manual

13.2.6.2 SNMP Trap Sample Application

The way the agent sends data to the manager without sending a query is the Trap method. In

this method, the register connected to the input of the Trap block is sent according to the

conditions in the Trap block.

Trap settings are entered as follows.

MIB Browser Trap settings are also made as follows.

360 Distributed Control Systems / Programming Manual

If the register value at the input of the trap block is changed and the condition specified in the

block settings is met, it will appear on the trap receiver as follows.

361 Distributed Control Systems / Programming Manual

14 COMMUNICATION BLOCKS

14.1 SERIAL PORT BLOCK

14.1.1 Connections

#SPB0: Serial connection output

14.1.2 Connection Explanations

Out: Serial Connection Output

Output of the block which is connected to the protocol blocks.

14.1.3 Block Settigns

Serial Port No: Port number is entered here.

Port Type: Communication type is selected here.

Baudrate: Baud rate is entered here.

Other: Different Baudrates entered here.

Databits: Data bits number.

Parity: Parity is entered here.

Stopbit: Stopbit is entered here.

362 Distributed Control Systems / Programming Manual

14.1.4 Block Explanation

Any protocol supported by Mikrodev PLC can be configured to communicate over serial port.

For this purpose, Serial Port block must be connected to related protocol block in PLC project.

Serial Port Block can be used with following protocols of Mikrodev PLC/RTU:

- Modbus RTU Master

- Modbus RTU Slave

- DNP3

- IEC101

- Modbus Gateway mode

- Transparent Serial Gateway mode

Note: Only one serial port block can be defined for the same serial port on a device.

Serial Port Block Settings:

Serial Port No

Serial port no is used to select which serial port of PLC will be used. To learn the correct port

number for this selection, which is related to the PLC hardware, refer to the Hardware Manual of

the corresponding PLC model.

MP110 series has 1 serial port. So, Serial Port no must be 0.

MP211 series has 2 serial port. Serial Port No 0 is used for RS485 port, Serial Port No 1 is used

for RS232.

Port Type

Port Type selection is only active for PLC hardware series that are capable of RS232/RS485

configurable serial port. If PLC doesn’t have RS232/RS485 configurable serial port, selection of

Port Type is ignored.

363 Distributed Control Systems / Programming Manual

14.1.5 Sample Application

RTU Master block and serial port block is connected to use the device in

Master mode in serial

communication.

14.2 TCP SOCKET BLOCK

14.2.1 Connections

Ip: IP is entered here.
#TSB0: Output of the block

Por: Port is entered here.

Con: State of the connection
Ena: Enable pin.

14.2.2 Connection Explanations

Ip: IP input

Server IP or Filter IP is entered here.

Por: Port input

Server or Client port is entered here.

Ena: Enable input

To activate TCP client socket, this input should be high(1).

364 Distributed Control Systems / Programming Manual

#TSB0: Output of the block

Block output which is connected to the protocol blocks which perform TCP communication.

Con: Connection

Indicates are there any established socket connection provided by the block. If there is active

socket, it is high(1) and if there is no, it is low(0).

14.2.3 Block Settings

Socket Type: One of the TCP Client or TCP Server
options can be selected in Block Settings.

Server Port: Client port input.

Server IP: Client IP input.

Listening Port: Server port input.

IP Filter: IP filter input of the server.

Media Type: Ethernet, GSM or WİFİ is chosen here.

365 Distributed Control Systems / Programming Manual

14.2.4 Block Explanation

TCP Socket Block is used to provide the communications with Ethernet,

GSM or Wi-Fi, with

supported protocols.

“#TSB0” output of the block can be connected to the TCP Communication

Protocol Blocks such as.

Modbus TCP Slave, Modbus TCP Master, DNP3 Slave, IEC101 Slave and

IEC104 Slave.

“Con” output of the block is “1” when there exists a communication

connection and “0” when there is no connection.

TCP Socket Block can be used as “TCP Client” or ”TCP Server”.

When you want to program the device as “TCP Client”, the “Server Port”

and the “Server IP” of the TCP Server must be defined.

When the device is programmed as a "TCP Server", "Listen Port" that "TCP

Client" would be connected must be defined.

When the device is programmed as a “TCP Server”, “TCP Client IP's that

have connected can be filtered.

366 Distributed Control Systems / Programming Manual

IP Filtresi

To select the IP filter from the TCP socket block, the IPs that will be allowed to connect to this

device are first defined in the Projects / Text Table section. (Figure 1)

 (1)

In the TCP socket blog, the allowed IPs index defined in the Text Table is selected from the IP

Filtering option. (Figure 2)

 (2)

Thus, only filtered IP can connect to this device.

367 Distributed Control Systems / Programming Manual

14.2.5 Sample Application

TCP Server Mode

TCP Socket block is connected to the Modbus TCP slave block, so Modbus communication will

be performed.

For this, the TCP server is selected from the block options, the listening port (502) is also

defined. IP filter is enabled and 2 different IPs are allowed to connect. (192.168.2.100 and

192.168.2.101)

In this case, the device can be connected to the Modbus TCP Client with one of the IPs in the IP

filter.

368 Distributed Control Systems / Programming Manual

TCP Client Mode

When TCP is programmed as Client, a TCP Master block must be connected to the block

output. Modbus TCP Master block is connected in the example.

The Port of the Server to which the device will establish a communication connection is defined.

The IP of the Server to which the device will establish a communication connection is defined.

After the IP and Port numbers are defined in the TCP Socket Block, the TCP Master block of the

corresponding communication protocol (In Example Modbus TCP Master) is connected to the

O1 output of TCP Socket Block.

369 Distributed Control Systems / Programming Manual

Modbus Reader or Writer blocks that are connected to the Modbus TCP Master block output are

also defined for addresses to be read or written.

14.3 DNS BLOCK

14.3.1 Connections

Ena: Enable pin

#DNS0: Output of the block

Fou: Link status output

14.3.2 Connection Explanations

Ena: Enable pin

It is the input that needs to be given a logic (1) signal to activate the DNS block.

#DNS0: Output of the block

TCP Connects to the IP input of the Socket block.

Fou: Link status output

It is the output that gives the logic 1 signal when the IP determined from the block special

settings is found.

370 Distributed Control Systems / Programming Manual

14.3.3 Block Settings

Primary DNS Server: The Primary DNS server is
entered in this section.

Secondary DNS Server: Secondary DNS Server is
entered to this section.

URL: The URL to use is entered in the string
table. The ID of the URL entered in the string
table is selected here.

Default IP: Default IP is entered in this section. If
the DNS block cannot convert the URL to the IP
address, Default IP is used.

DNS Timeout: The DNS timeout value is entered
in this section

371 Distributed Control Systems / Programming Manual

14.3.4 Block Explanations

Click the Projects tab on the left of the Mikrodiagram software. String Table is selected from the

top menu.

You can enter a URL under the String Text heading.

372 Distributed Control Systems / Programming Manual

14.3.5 Sample Application

The DNS Block output is connected to the ip pin of the TCP Socket block. The DNS block will

convert the URL to IP, Fou. pin is active. The TCP block uses the IP address from the DNS

block.

The TCP socket block can be used with the Mqtt block

373 Distributed Control Systems / Programming Manual

15 TABLE BLOCKS

15.1 WORD TABLE

15.1.1 Connections

In: Word input value to add

#WTab0: Block output

Clk: Clock signal input

15.1.2 Connection Explanations

In: Word value input to add

It is Word input value to add to the table.

Clk: Clock signal input

When “Clk” signal is high, the data in the “In” input is added into the table.

#WTab0: Block output

The output block which carries the table reference.

374 Distributed Control Systems / Programming Manual

15.1.3 Block Settings

Type Table: It can be selected as “CIRCULAR” or “FIFO”.

Table Size: Table size can be determined with this option.
The unit of the table size is “Byte”.

15.1.4 Block Explanation

Table size and table type can be chosen like below by user. Here, one of the options “Circular

or FILO (First In Last Out)” must be chosen.

In FILO Mode; the data added into the table with smaller index is always added like a new one.

While the new data becomes 0th data, the oldest one becomes the last element. For a table

which has 4 word data, adding data in FILO mode works like below.

12

67

25

42

44

44

12

67

25

23

23

44

12

67

101

101

23

44

12

5

5

101

23

44

56 CLK CLK CLK CLK

375 Distributed Control Systems / Programming Manual

In applications where the order of addition of the data on the table is important, a FILO type

table is required.

On large tables, adding data to FILO type table takes more processing time. Therefore, FILO

type table should be used just if necessary.

For a table which has 4 word data, adding data in Circular mode works like below:

Table Size is the total byte size that the datas of the table cover in memory. Since the word

datas are 2 bytes long, the size of the table should be 2 times the number of Word datas to be

kept in the table.

Retentivity can be activated in the table blocks. After all PLC loops, the data in table blocks

which retentivity is activated, recorded to the retentive memory of PLC. If PLC is somehow

restarted then data in the table is read from the retentive memory and the initial values are filled.

Thus, the data in the table becomes retentive. If it is also desired to record the order of data

addition into the table, FILO must be selected as the table type. In the table which retentivity is

activated an optimum table size must be selected to prevent wasting retentivity memory.

12

67

25

42

44

44

67

25

42

23

44

23

25

42

101

44

23

101

42

5

44

23

101

5

56 CLK CLK CLK CLK

376 Distributed Control Systems / Programming Manual

15.2 ANALOG TABLE

15.2.1 Connections

In: Analog input value to add

#ATab0: Block output

Clk: Clock signal input

15.2.2 Connection Explanations

In: Analog input value to add

It is the analog input value to is added into the table.

Clk: Clock signal input

In the rising edge of “Clk” signal, the data in the “In” input added to table.

#ATab0: Block output

The block output which is carry the table reference.

377 Distributed Control Systems / Programming Manual

15.2.3 Block Setting

Table Type: Table type can be determined as “CIRCULAR” or
“FILO”.

Table Size: The value of table size can be determined here. Its
unit is “Bytes”.

15.2.4 Block Explanation

Table size and table type can be chosen like below by user. Here, “Circular or FILO (First In

Last Out)” should be chosen.

In FILO Mode; the data with smaller index which is the data is added into the table always

added like a new one. While the new data become 0th data, the oldest one become the last

data. For a table which have 4 analog data, adding data in FILO mode works like below:

12.0

67.0

25.0

42.0

44.0

44.0

12.0

67.0

25.0

23.0

23.0

44.0

12.0

67.0

101.0

101.0

23.0

44.0

12.0

5.0

5.0

101.0

23.0

44.0

56.0 CLK CLK CLK CLK

378 Distributed Control Systems / Programming Manual

In applications where the order of addition of the data into the table is important, a FILO type

table is required.

On large tables, adding data to FILO type table takes more processing time. Therefore, FILO

type table should be used just if necessary.

For a table which have 4 analog data, adding data in Circular mode works like below:

Table Size is the total byte size that the datas of the table cover in memory. Since the analog

datas 4 bytes long, the size of the table should be 4 times the number of analog datas to be kept

in the table.

Retentivity can be activated in the table blocks. After all PLC loops, the data in table blocks

which retentivity is activated, recorded to the retentive memory of PLC. If PLC is somehow

restarted then data in the table is read from the retentive memory and the initial values are filled.

Thus, the data in the table becomes retentive. If it is also desired to record the order of data

addition into the table, FILO must be selected as the table type. In the table which retentivity is

activated an optimum table size must be selected to prevent wasting retentivity memory.

12

67

25

42

44

44

67

25

42

23

44

23

25

42

101

44

23

101

42

5

44

23

101

5

56 CLK CLK CLK CLK

379 Distributed Control Systems / Programming Manual

15.3 LONG TABLE

15.3.1 Connections

In: Long input value to add

#LTB0: Block output

Clk: Clock signal input

15.3.2 Connection Explanations

In: Long input value to add

It’s the long input value to be added to table.

Clk: Clock signal input

In the rising edge of “Clk” signal, the data in the “In” input is added to table.

#LTB0: Block output

The block output which carries the table reference.

380 Distributed Control Systems / Programming Manual

15.3.3 Block Setting

Table Type: Table type can be determined as
“CIRCULAR” or “FILO” in here.

Table Size: The value of table size can be determined
here. Its unit is “Bytes”.

15.3.4 Block Explanation

Table size and table type can be chosen like below by user. Here, one of the options “Circular

or FILO (First In Last Out)” should be chosen.

In FILO Mode; the data with smaller index which is the data is added into the table always add

like a new one. While the new data become 0thh data, the oldest one become the last data. For

a table which have 4 long data, adding data in FILO mode works like below:

12

67

25

42

44

44

12

67

25

23

23

44

12

67

101

101

23

44

12

5

5

101

23

44

56 CLK CLK CLK CLK

381 Distributed Control Systems / Programming Manual

In applications where the order of addition of the data on the table is important, a FILO type

table is required.

On large tables, adding data to FILO type table takes more processing time. Therefore, FILO

type table should used just if necessary.

For a table which have 4 long datas, adding data in Circular mode works like below:

Table Size is the total byte area that the datas of the table cover in memory. Since the long

datas 4 bytes long, the size of the table should be 4 times the number of long datas to be kept in

the table.

Retentivity can be activated in the table blocks. After all PLC loops, the data in table blocks

which retentivity is activated, recorded to the retentive memory of PLC. If PLC is somehow

restarted then data in the table is read from the retentive memory and the initial values are filled.

Thus, the data in the table becomes retentive. If it is also desired to record the order of data

addition into the table, FILO must be selected as the table type. In the table which retentivity is

activated an optimum table size must be selected to prevent wasting retentivity memory.

12

67

25

42

44

44

67

25

42

23

44

23

25

42

101

44

23

101

42

5

44

23

101

5

56 CLK CLK CLK CLK

382 Distributed Control Systems / Programming Manual

15.4 BIT TABLE

15.4.1 Connections

Tbl: Binary input value to add

#BTB0: Block output

InB: Clock signal input

15.4.2 Connection Explanations

In: Binary input value to add

It is Binary input value to be added into table.

InB: Clock signal input

In the rising edge of “InB” signal, the data in the “Tbl” input is added into the table

#BTB0: Block output

The block output which is carry the table reference.

383 Distributed Control Systems / Programming Manual

15.4.3 Block Setting

Table Type: Table type can be determined as
“CIRCULAR” or “FILO” in here.

Table Size: The value of table size can be determined
here. Its unit is Byte.

15.4.4 Block Explanation

Table size and table type can be chosen like below by user. Here, one of the options “Circular

or FILO (First In Last Out)” should be chosen.

In FILO Mode; the data with smaller index which is the data is added into the table always add

like a new one. While the new data become 0.data, the oldest one become the last data. For a

table which have 4 bit data, adding data in FILO mode works like below:

0

0

0

0

1

1

0

0

0

0

0

1

0

0

1

1

0

1

0

1

1

1

0

1

0 CLK CLK CLK CLK

384 Distributed Control Systems / Programming Manual

In applications where the order of addition of the data on the table is important, a FILO type

table is required.

On large tables, adding data to FILO type table takes more processing time. Therefore, FILO

type table must used just it necessary.

For a table which have 4 bit data, adding data in Circular mode works like below:

Table Size is the total byte area that the datas of the table cover in memory. Since the Bit datas

are 1 byte long, the size of the table should be same as the number of Bit datas to be kept in the

table.

Retentivity can be activated in the table blocks. After all PLC loops, the data in table blocks

which retentivity is activated, recorded to the retentive memory of PLC. If PLC is somehow

restarted then data in the table is read from the retentive memory and the initial values are filled.

Thus, the data in the table becomes retentive. If it is also desired to record the order of data

addition into the table, FILO must be selected as the table type. In the table which retentivity is

activated an optimum table size must be selected to prevent wasting retentivity memory.

0

0

0

0

1

1

0

0

0

0

1

0

0

0

1

1

0

1

0

1

1

0

1

1

0 CLK CLK CLK CLK

385 Distributed Control Systems / Programming Manual

15.5 WORD TABLE OPERATION

15.5.1 Connections

TbI: Table reference connection

#WTOp0: Output of the
block

InB: Parameter of operation

Trg: Operation trigger signal

15.5.2 Connection Explanations

TbI: Table reference connection

It’s connected with the output of the table which is processed.

InB: Parameter of operation

It’s the input parameter data used in some operations.

Trg: Operation trigger signal

It’s the operation trigger input signal.

#WTOp0: Output of the block

The output for the result of table operation.

386 Distributed Control Systems / Programming Manual

15.5.3 Block Settings

Table Offset: It’s used to select the data
offset to be processed in the table data.

Math Type: The operation type to be
processed on the table data is selected.

On When Trig is Active: If it is selected, the
operation to be processed on the table
data is executed only on the rising edge of
the "Trg" input.

387 Distributed Control Systems / Programming Manual

15.5.4 Block Explanation

It executes the operation which is defined on the table data and writes the result to output of the

block.

The types of operations that can be performed on the table and their explanations are as

follows:

Latest Data It fetches the data value which is the last value added to table.

Sum It calculates the summary of all data on the table.

Mean It calculates the average of the data on the table.

Max It finds the maximum value on the table data.

Min It finds the minimum value on the table data.

Median The data on the table is ordered small to large, after that the

value which is on the middle of order write to output of the

block. If the number of values that can be written to the table is

an even number, the arithmetic mean of the two middle values is

written to the block output after small to large sorting.

Direction It calculates increase or decrease on the trends from the data

which is added to table then if it increases then write 1 or if it

decreases then write 0 to output.

Note: All table data must be filled in for the direction function to

work.

Read Offset It returns the value in the index which is defined with table

offset, from the data on the table.

Read Byte Offset Without looking the type of the value on the table, it returns the

value in the offset when it is ordered as straight byte array.

Circular Left Shift It shifts the data in the table left 1 index, and its transfer the

leftmost data to right.

Shifting Left İt shift the data in the table 1 index to left, write 0 to rightmost

index.

388 Distributed Control Systems / Programming Manual

Circular Right Shift It shifts the data in the table right 1 index, and its transfer the

rightmost data to left.

Shifting Right İt shift the data in the table 1 index to right, write 0 to leftmost

index.

Put Offset The value in the InB entrance is written onto the data in the

index which is defined by the table offset.

Clear Table Resets the data in the table.

Search The block output is written in which index of the table the value

entered from the "InB" input among the table data is located.

Note: If the median is selected in the table operation, the values in the table indices are

changed since the data in the table is sorted from small to large.

15.5.5 Sample Applications

In the sample applications, the table type is selected as FILO and the table size is selected as

20 bytes, each word value is 2 bytes so 10 word values can be recorded in the table. Each time

the value in the change detector block and Word table “In” input change, it is written on the

table.

389 Distributed Control Systems / Programming Manual

In the example,8 random integer is written on the table.

“Tbl” input of word table operation blocks is connected with the output of word table

blocks. When “LatestData and Sum “is selected in the word table operation block:

When “LatestData” is selected: Since last value added to the table is 29, the value is written on

the output of block.

When “Sum” is selected: integers written on the table are collected and summery is written in

the output of the block.

When “Mean and Median “are selected in the word table operation block;

390 Distributed Control Systems / Programming Manual

In the mean operation, the values in the table are summed and divided by 10 because the table

size is selected by 10 word values. (155/10=15 decimal part is filtered because it is word table

operation block.)

There are 10 word value (even number) on the table in the median operation.

With median operation, the values on the table are ordered as small to large.

The arithmetic mean of the values at the 4th and 5th offset (16 and 18) of the table, which is

sorted from small to large, is taken and written at the output of the block.

Note: In the median operation, the values in the table are reordered from the smallest to the

table, and the value in the middle of the table is written to the block output as the median value.

If there are an even number of values in the table (for example 10 values), the arithmetic mean

of the two values in the middle of the table is written to the block output as the median value.

When “Max and Min” are selected in the word table operation block;

The largest integer written on the table is 33 so maximum value is 33; the smallest integer

written on the table is 0 so minimum value is 0.

391 Distributed Control Systems / Programming Manual

When “Direction” is selected in the word table operation block;

When the direction operation is selected, the last value added to the table is compared with the

previous value from the last. İf last value is bigger, than 1 is written on the output of block

otherwise it will be 0.

When “PutOffset and ReadOffset” are selected in the word table operation block;

Put Offset: “Table offset” is selected as “2” from inside of the word table operation block. In this

case, the value in the input of “In” will be written to the 2nd offset of the table.

Read Offset: The table offset to be read in the word table operation block can be selected from

inside and outside of the block. In the example, table offset is selected as “2” from outside of the

block.

392 Distributed Control Systems / Programming Manual

In this case the value which is written on the 2. offset of the table by Put Offset is read on the 2.

offset of the table by Reading Offset.

When “ReadByteOffset” is selected in the word table operation block;

In the example, the 6th and 7th bytes of the 20 byte long word table are read. The 6th and 7th

bytes correspond to the 3rd table offset in the table. In this case, the 6th bit indicates the LSB

(least significant bit) bits and the 7th bit indicates the MSB (most significant bit) bits. “20” value

at the third table offset are written in LSB bits that can carry 0-255 values. Since the value at the

third table offset is less than 256, the MSB bits are 0.

393 Distributed Control Systems / Programming Manual

15.6 ANALOG TABLE OPERATION

15.6.1 Connections

TbI: Table reference connection

#ATOp0: Output of the block InB: Operation parameter

Trg: Operation trigger signal

15.6.2 Connection Explanations

TbI: Table reference connection

The output of the table to be processed is connected.

InB: Operation parameter

It is the input of the parameter data which is used in some operation.

Trg: Operation trigger signal

Input of the operation trigger signal.

#ATOp0: Output of the block

The output of the table operation result.

394 Distributed Control Systems / Programming Manual

15.6.3 Block Setting

Table Offset: It’s used to select the data offset to be
processed in the table data.

Math Type: The operation type to be processed on the
table data is selected.

On When Trig is Active: If it is selected, the operation
to be processed on the table data is executed only on
the rising edge of the "Trg" input.

395 Distributed Control Systems / Programming Manual

15.6.4 Block Explanation

It executes the operation which is defined on the table data and write the solution to output of

the block.

The types of operations that can be performed on the table and their explanations are as

follows:

Latest Data It fetches the data value which is the last value added to table.

Sum It calculates the summery of all data on the table.

Mean It calculates the average of the data on the table.

Max It finds the maximum value on the table data.

Min It finds the minimum value on the table data.

Median The data on the table is ordered small to large, after that the

value which is on the middle of order write to output of the

block. If the number of values that can be written to the table is

an even number, the arithmetic mean of the two middle values is

written to the block output after small to large sorting.

Direction It calculates increase or decrease on the trends from the data

which is added to table then if it increases then write 1 or if it

decreases then write 0 to output.

Read Offset It returns the value in the index which is defined with table

offset, from the data on the table.

Read Byte Offset Without looking the type of the value on the table, it returns the

value in the offset when it is ordered as straight byte array

Circular Left Shift It shifts the data in the table left 1 index, and its transfer the

leftmost data to right.

Shifting Left İt shift the data in the table 1 index to left, write 0 to rightmost

index.

Circular Right Shift It shifts the data in the table right 1 index, and its transfer the

rightmost data to left.

396 Distributed Control Systems / Programming Manual

Shifting Right İt shift the data in the table 1 index to right, write 0 to leftmost

index.

Put Offset The value in the InB entrance is written onto the data in the

index which is defined by the table offset.

Clear Table Resets the data in the table.

Search The block output is written in which index of the table the value

entered from the "InB" input among the table data is located.

Note: If the median is selected in the table operation, the values in the table indices are

changed since the data in the table is sorted from small to large.

15.6.5 Sample Applications

In the sample applications, the table type is selected as Circular and the table size is selected

as 20 bytes, each analog value is 4 bytes so 5 word values can be recorded in the table. Each

time the value in the change detector block and Analog table “In” input change, it is written on

the table.

In the example, 3 analog values are randomly written in the table.

397 Distributed Control Systems / Programming Manual

When "Sum and Mean" is selected in the analog table operation block;

When “Sum” is selected; The analog numbers written in the table are summed and the total

value is written to the block output.

When “Mean” is selected; the values in the table are summed and divided by 5 because the

table size is selected according to the 5 analog values. (27.33/5=5.466)

While "Median" is selected in the analog table operation block;

Median operation has 5 analog values on table.

With median operation, values in the table are sorted from small to large.

The value at the middle point of the table (0 value in the 2nd offset) is written to the block

output.

398 Distributed Control Systems / Programming Manual

While the analog table operation block is selected as "Max and Min";

The maximum value written to the table is 21, the maximum value is 21, and the smallest

integer in the table is -4.12, the minimum value is -4.12.

While "Direction" is selected in analog table operation block

When the direction operation is selected, the last value added to the table is compared with the

previous value from the last. If the last value is greater, "1" is written to the block output. If the

last value is smaller, "0" is written to the block output.

399 Distributed Control Systems / Programming Manual

In the analog table operation block, "PutOffset and ReadOffset" are selected;

Put Offset: "Table offset” has been selected as 1 in analogue table operation block. In this case

the value in InB will be written to the 1st offset of the table.

Read Offset: The table to be read in the analog table operation block can be selected from

inside and outside the offset block. In the example, the offset is chosen as 1 from out of the

block.

In this case, the value written to the 1st offset of the table with Put Offset is read from the 1st

offset of the table with Read Offset.

400 Distributed Control Systems / Programming Manual

15.7 LONG TABLE OPERATİON

15.7.1 Connections

TbI: Table reference connection

#LTOp0: Output of the block InB: Operation Parameter

Trg: Operation trigger signal

15.7.2 Connection Explanations

TbI: Table reference connection

The output of the table to be processed is connected.

InB: Operation parameter

The parameter data input used in some operations.

Trg: Operation trigger signal

Operation trigger signal input.

#LTOp0: Output of the block

Output of the result of table operation.

401 Distributed Control Systems / Programming Manual

15.7.3 Block Settings

Table Offset: It is used in the table data to
select the data offset to be processed.

Math Type: The operation type to be
performed on the table data is selected.

On When Trig is Active: If it is selected, the
operation to be performed on the table
data is executed only on the rising edge of
the "Trg" input.

402 Distributed Control Systems / Programming Manual

15.7.4 Block Explanations

It writes the result of the operation to the output of the block by performing the operations

defined on the table data.

The types of operations that can be performed on the table and their explanations are as

follows:

Latest Data Returns the most recently added data value to the table

Sum The table calculates the sum of all the data.

Mean It calculates the average of the data in the table.

Max İt finds the greatest value from the table data.

Min İt finds the smallest value from the table data.

Median The data in the table is sorted from small to large, the value in

the middle of the table is written to the block exit after sorting. If

the number of values that can be written to the table is an even

number, the arithmetic mean of the two middle values is written

to the block output after small to large sorting.

Direction It calculates increase or decrease on the trends from the data

which is added to table then if it increases then write 1 or if it

decreases then write 0 to output.

Reading Offset Returns the value of the indexed value defined by the table

offset from the table data.

Read Byte Offset Regardless of the type of data in the table, the value in the offset

at which it is ordered as a straight byte array is returned.

Circular Left Shift Shifts the data in the table to the left by 1 index and moves the

leftmost indexed data to the far right.

Shifting Left The table data is shifted left by 1 index and 0 is written to the

rightmost.

Circular Right Shift Move the table data to the right by 1 index and move the

rightmost indexed data to the left.

403 Distributed Control Systems / Programming Manual

Shifting Right Move the table data 1 index right and write 0 to the leftmost

value

Put Offset The value in the input “In” is written on top of the indexed data

defined by the table offset.

Clear Table Resets the data in the table.

Search The block output is written in which index of the table the value

entered from the "InB" input among the table data is located.

Note: If the median is selected in the table operation, the values in the table indexes change

because the table data is sorted from small to large.

15.7.5 Sample Applications

In the example applications, the table type is selected as “Circular”, the table size is selected as

20 bytes, and 1 long value is 4 bytes, 5 long value tables can be saved. The change detector

block and the value of the input in the long table “In” are changed each time the value changes.

In the example, 5 random values are written randomly in the table.

404 Distributed Control Systems / Programming Manual

While "LatestData and Sum" is selected in the long table operation block;

When "Latest Data" is selected; Since the last 20 values are stored in the table, the value is

written to the block output.

When "Sum" is selected; the numbers written in the table are summed and the total value is

written at the output of the block.

405 Distributed Control Systems / Programming Manual

When "Mean and Median" is selected in the long table operation block;

While "Mean" is selected; the values in the table are summed and divided by 5 because the

table size is selected according to 5 long values (Since the 48/5 = 9 long operation is performed,

the decimal part of the operation result is filtered.)

Median process has 5 long value on table.

With median operation, values in the table are sorted from small to large.

The value at the middle point of the table (12 values in the 2nd offset) is written to the block

output.

406 Distributed Control Systems / Programming Manual

When "Max and Min" is selected in the long table operation block;

The maximum value written to the table is 52, the maximum value is 52, and the smallest

integer in the table is -32, the minimum value is -32.

While "Direction" is selected in the long table operation block;

When the direction operation is selected, the last value added to the table is compared with the

previous value from the last. If the last value is greater, "1" is written to the block output. If the

last value is smaller, "0" is written to the block output.

407 Distributed Control Systems / Programming Manual

While “PutOffset and ReadOffset” are selected in the long table operation block;

Put Offset: The "table offset” is selected as 0 from the long table operation block. In this case,

the value in “InB” will be written to the 0th offset of the table.

Read Offset: The table to be read in the long table operation block can be selected from inside

and outside the offset block. In the example, the offset is chosen as 0 from out of the block.

In this case, the value written to 0th offset of the table with Put Offset is read from 0th offset of

the table with Read Offset.

When "ReadByteOffset" is selected in the long table operation block;

In the example, the 8th and 9th bytes of the long table which is 20 bytes long are read. 8th, 9th,

10th, 11th byte corresponds to the 2nd table offset in the table. In this case, the 8th, 9th bits

indicate the LSB bits, and the 10th, 11th bits indicate the MSB bits. “12” value at the 2nd table

408 Distributed Control Systems / Programming Manual

offset are written to the 8th byte which can carry 0-255 values. Since the value is less than 256

9th, 10th, 11th bytes are all 0.

15.8 BIT TABLE OPERATİON

15.8.1 Connections

TbI: Table reference connection

#BTOp0: Output of the block InB: Operation parameter

Trg: Operation trigger signal

15.8.2 Connection Explanations

TbI: Table reference connection

The output of the table to be processed is connected.

InB: Operation parameter

The parameter data input used in some operations.

Trg: Operation trigger signal

Operation trigger signal input

#BTOp0: Output of the block

Output for the result of table operation.

409 Distributed Control Systems / Programming Manual

15.8.3 Block Setting

Table Offset: It is used in the table data
to select the data offset to be
processed.

Math Type: The operation type to be
performed on the table data is selected.

On When Trig is Active: If it is selected,
the operation to be performed on the
table data is executed only on the rising
edge of the "Trg" input.

410 Distributed Control Systems / Programming Manual

15.8.4 Block Explanations

It writes the result of the operation to the output of the block by performing the operations

defined on the table data.

The types of operations that can be performed on the table and their explanations are as

follows:

Latest Data Returns the most recently added data value to the table.

Sum If any of the data in the table is 1, the result is 1, if all 0, the

result is 0.

Mean If any of the data in the table is 0, it is 0, and if all of them are 1,

the result is 1.

Max If any of the data in the table is 1, the result is 1, if all 0, the

result is 0.

Min If any of the data in the table is 0, the result is 0, all 1 are the

result 1.

Median The data in the table is sorted from small to large, the value in

the middle of the table is written to the block exit after sorting. If

the number of bit values that can be written to the table is an

even number, then if the middle two values are 1 after the

sorting process, 1 is written to the block output. If either or both

of the middle values are 0, 0 is written to the block output.

Direction It calculates increase or decrease on the trends from the data

which is added to table then if it increases then write 1 or if it

decreases then write 0 to output.

Reading Offset Returns the value of the indexed value defined by the table

offset from the table data.

Read Byte Offset Regardless of the type of data in the table, the value in the offset

at which it is ordered as a straight byte array is returned.

Circular Left Shift It shifts the data in the table left 1 index, and its transfer the

leftmost data to right.

411 Distributed Control Systems / Programming Manual

Shifting Left The table data is shifted left by 1 index and 0 is written to the

rightmost.

Circular Right Shift Move the table data to the right by 1 index and move the

rightmost indexed data to the left.

Shifting Right Move the table data 1 index right and write 0 to the leftmost

value

Put Offset The value in the input “In” is written on top of the indexed data

defined by the table offset.

Clear Table Resets the data in the table.

Search The block output is written in which index of the table the value

entered from the "InB" input among the table data is located.

Note: If the median is selected in the table operation, the values in the table indexes change

because the table data is sorted from small to large.

15.8.5 Sample Applications

The table type "FILO" is selected in the sample applications, the table size is selected as 5

bytes and 5 bit value can be saved in the table.

İn the example,5 bit value is written on the table.

412 Distributed Control Systems / Programming Manual

1 0 1 1 0

When "LatestData and Sum" is selected in the bit table operation block;

When "Latest Data" is selected; the value is written to the block output since the most recent

value is 1 on the FILO.

When “Sum” is selected; since any of the bit values written to the table is 1, the result which is

written on the output of the block is 1 as a result of the bit table average operation.

While "Mean and Direction" is selected in the bit table operation block;

When “Mean” is selected; since the values in the table are not all 1, the result is written as 0 in

the output of the block as a result of the bit table average operation feature.

When “Direction” is selected; the last value added to the table is compared to the previous

value. Since the previous value of the last one is 0, and the last value is 1, the result is written to

the output of the block as the result of the increasing trend.

413 Distributed Control Systems / Programming Manual

When "Max and Min" is selected in the bit table operation block;

When the table has bit value 1, the maximum value is 1 and when the table has bit value 0, the

minimum value is written as 0 in the block outputs.

While “ReadOffset” is selected in the bit table operation block;

Read Offset: The table offset to be read in the bit table operation block can be selected from

inside and outside of the block. In the example, the offset is chosen as 0 from out of the block.

In this case, the value in the 0th offset is read as 1 with Reading Offset.

414 Distributed Control Systems / Programming Manual

16 CONTROLLER BLOCKS

16.1 HYSTERESIS

16.1.1 Connections

In: Hysteresis block input

#Hyst0: Hysteresis block
output

ThL: Bottom threshold

ThH: Upper threshold

Trg: Trigger input

16.1.2 Connection Explanations

In: Hysteresis block input.

It is hysteresis block input. Cannot be left blank.

ThL: Bottom threshold

It is the input for bottom threshold value.

ThH: Upper threshold

It is the input for upper threshold value.

Trg: It is trigger input.

It is the trigger input. It can be left blank.

#Hyst0: Hysteresis block output

The hysteresis block output is logic high(1) or logic low(0) output.

415 Distributed Control Systems / Programming Manual

16.1.3 Block Settings

Threshold(Bottom): The bottom threshold value can
be determined within the hysteresis block

Threshold(Upper): The upper threshold value can be
determined within the hysteresis block.

On When Trig is Active: The incoming signal to block’s
“Trg” input will activate the block. If selected, block’s
“Trg” input cannot be left blank.

16.1.4 Block Explanation

It is used to create the switching range by switching on and off at the end points of the "bottom

threshold and upper threshold" determined in on/off controlled systems.

“In” input is the hysteresis input to be referenced. It can not be left blank.

The “ThL” input is the lower threshold input, and if the input value “In” is less than the “ThL” then

O1 output will become logic low(0).

The “ThH” input is the upper threshold input. If the input value is greater than the “ThH” input,

the O1 output will become logic high(1).

The “ThL” and “ThH” inputs can be left blank and set in the block options.

When the input value “In” is greater than the "upper threshold" value, the output O1 is logic high(1)

until the input value “In” is a value smaller than the "bottom threshold" value.

When the input value “In” is less than the "bottom threshold" value, O1 output is logic low(0) until

the input “In” is greater than the "upper threshold" value.

In a system where On/Off ambient temperature control is performed, if the ambient temperature

is above the "upper threshold" value, the cooling system is started and the cooling system is

416 Distributed Control Systems / Programming Manual

shut down when the temperature value becomes lower than the "lower threshold". System is run

to keep the temperature in a certain range. The larger the range "bottom threshold" to "upper

threshold" range, the less the On Off frequency (the temperature sensor is connected to the

block input "In" to measure ambient temperature).

“Trg input” is trigger input, can be left blank. If "On When Trig is Active" is selected, the block

becomes active at every rising edge triggered to Trg input. If "On When Trig is Active" is

selected, the block Trg input can not be left blank.

16.1.5 Working Chart

16.1.6 Sample Application

417 Distributed Control Systems / Programming Manual

In the example,

It is aimed to turn on/off the air conditioner with RQ0 connected to the output of the hysteresis

block. The temperature sensor is connected to the “In” input. The minimum temperature that the

environment should be, is set by the "bottom threshold" and the maximum temperature by the

"upper threshold".

The air conditioner turns on when the ambient temperature has risen above 23 ° C and then

turns off when it is below 20 ° C and it doesn’t turn on until the temperature rises above 23 ° C

again. The same cycle was repeated when the temperature rises above 23 ° so that the ambient

temperature is kept constant between 20 ° and 23 °.

418 Distributed Control Systems / Programming Manual

16.2 PID CONTROLLER

16.2.1 Connections

Pro: Process value analog data input

#PID0: Block exit

Tar: Target point entry

Sam: Sampling time

Kp: P coefficient input (%)

Ti: I coefficient input (sec)

Td: D Coefficient input (sec)

Pro: Process input min. entry

Pro: Process input max. entry

Pro: Process “Output Min.” entry

Pro: Process output max. entry

Mod: Mode selection

Dir: Direction selection

16.2.2 Connection Explanations

Pro: Process value analog data input

The instant value read from the system, eg the value read from a device in a temperature

control application is connected here.

Tar: Target point input

The target point value input.

Sam: Sampling time (sec)

Sampling time value input.

It is the frequency of processing of the PID by reading the Pro input value to be controlled.

419 Distributed Control Systems / Programming Manual

Kp: P coefficient input (%)

P value input. The Kp coefficient is proportional. This means that it determines, the PID controller

will become active when PID process reaches to “what percentage” of the target point

Ti: I coefficient input (sec)

The I coefficient value input.

The present value and the target point are measured by integral effect and calculates the energy

to be given to the system in order to reduce the error. The meaning of the “seconds” in the integral

coefficient is that the errors will be referenced by how many seconds before.

Td: D coefficient input (sec)

The coefficient D input value.

Derivative acts as the opposite of the integral coefficient. It has an impact on braking effect in

the system. The derivative and integral coefficients are in seconds. In the derivative process,

the PID estimates the future states of the system. The “seconds” value indicates a how many

seconds long forecast will be made.

Pro: Process input min. input

Process min value input.

The minimum value that the process input value can take is determined.

Ex: 4.0 for an input range of 4-20mA, 0 for an input range of 0-100, 0 for an input range of 0-

65535, -100.0 for an input range of -100 ... + 100.

By this means, the PID block will automatically scale the input value.

Pro: Process input max. input

Process input max value input

The maximum value that the process input value can take is determined.

Ex: 20.0 for an input of range of 4-20mA, 100.0 for an entry from 0-100, 65535 for an input range

of 0-65535., 100.0 for an input range of -100 ... + 100

By this means, the PID block will automatically scale the input value.

420 Distributed Control Systems / Programming Manual

Pro: Process “Output Min.” entry

Process “Output Min.” value input.

The minimum value for the range that the actuator controlled by the PID accepts is determined.

For example, if the PID process is connected to a frequency converter controlled by 4-20 mA, this

value should be entered as 4.0.

By this means, the PID block will automatically scale the output value.

Pro: Process output max. input

The maximum value for the range that the actuator controlled by the PID accepts is determined.

For example, if the PID process is connected to a frequency converter controlled by 4-20 mA,

then max. 20.0 should be entered as the value.

By this means, the PID block will automatically scale the output value.

Mod: Mode selection (Autotunning, Automatic)

Mode selection block value input

Automatic: If selected, the PID starts to operate according to the defined block parameters. "1"

must be entered when selecting from outside the block.

Autotunning: If selected, the PID block will autotune to determine the P, I, and D parameters. If

you want to select from outside the block, "100" should be entered.

Direction: Direction selection (Forward, Backward)

Direction selection is block input.

If the direction input value is 1; The error information used in the PID process is calculated as

follows:

En = ProcessInput - TargetPoint;

If the direction input value is 0; The error information used in the PID process is calculated as

follows:

En = TargetPoint - ProcessInput;

#PID0: Block Output

It is the block output. It outputs values between the min-max range defined in the “process output“

inputs.

421 Distributed Control Systems / Programming Manual

16.2.3 Block Settings

Target Point: Can be selected from inside or outside
the block.

Sampling Time: Can be selected from inside or
outside the block.

Kp: Can be selected from inside or outside the block.

Ti (seconds): Can be selected from inside or outside
the block.

Td (seconds): Can be selected from inside or outside
the block.

Input Min: Can be selected from inside or outside
the block

Input Max: It can be selected from inside or outside
the block.

Output Min: It can be selected from inside or
outside the block.

Output Max: Max: Can be selected from inside or
outside the block.

Mod: Outside the block, enter 100 for
"Autotunning", 1 for "Auto" .

Direction: 0 for "forward" selection from outside the
block, 1 for "back" selection.

16.2.4 Block Explanations

PID controller is one of the frequently used automatic control mechanisms in industrial and

automatic control field. The PID controller performs Proportional Integrative and Derivative

operations. A PID controller is a controller that is designed to stabilize a mechanism at a constant

value in the most optimal time and to keep the value constant in the ideal values.

One of the most important points in PID applications is to determine the P, I, and D values that

characterize the PID system. These values vary from system to system and should be optimized

according to the application conditions. In order to determine these values, Mikrodev PLC has an

"automatic tune" mechanism which calculates the values of P, I, D very practical and precise

422 Distributed Control Systems / Programming Manual

without the need of making any changes in the active project nor need a separate software-

hardware etc.. This mechanism is activated by writing 100 values to the MOD input of the PID

block.

In summary, the system prepares all components in the autotune mechanism. For the system,

the user is expected to select a target value for oscillating and a correct sampling time. The PID

autotune mechanism will swing the system until it creates 8 peaks. Then it computes the system

parameters according to these peak points and reports to the programmer from the USB port of

the device.

16.2.5 Sample Application

423 Distributed Control Systems / Programming Manual

For example, if you want to use 0-10 V controller at PID output, you should enter PID “Output

Min.” value as “0” and “Output Max.” value as “10”. If you want to get a current of 4-20mA, you

need to write “4” as the “Output Min.” value, 20 as the “Output Max.” value. The PID controller

has 12 inputs. Only the first input "Pro" input from these inputs is the input value to be processed

as the reference value of the PID controller. This input cannot be left blank. Other entries can be

left blank to set block options or allow values to be changed from the outside of block.

The proportional bandwidth set in the PID controller operates as “on-off logic” outside the limits

of Kp. When the proportional band is activated, the PID controller starts to operate. The integral

effect will give the system an energy up to the target point and as soon as the target point is

reached and this energy is reduced, the derivative effect will also come into play and the system

will try to keep the set value constant.

16.3 ANALOG RAMP

16.3.1 Connections

Str: Start/Stop

#ARmp0: Analog ramp
block output

Res: Reset to start

Str: Initial value input

Stp: End value input

Rea: Time to finish value (ms)

16.3.2 Connection Explanations

Str: Start/Stop

The ramp block Start / Stop input.

Res: Reset to start

Sets the ramp block output to its initial value.

Str: Inıtıal value input

The ramp block initial value is entered.

424 Distributed Control Systems / Programming Manual

Stp: End value input

The ramp block end value is entered.

Rea: Time to finish value(ms)

Time to reach end value (ms) input.

#ARmp0: Analog ramp block output

Analog ramp block output.

16.3.3 Block Settings

Initial Value: The initial value can be set from within
the block.

End Value: The end value can be set from within the
block.

Time of Arrival (ms): The time of arrival within the
block can be adjusted.

16.3.4 Block Explanation

The analog ramp block is used in applications where it is necessary to reach a fixed value from a

specified value with a constant acceleration within a certain time period.

“#ARmp0” block output value is reached with constant acceleration as soon as the logic input

high(1) is applied to the input “Str” and the time to reach the stop value is reached.

The “#ARmp0” output reaching the stop value at the end of the reaching time preserves the stop

value regardless of the position of the "Str" input.

425 Distributed Control Systems / Programming Manual

If the “Str” input returns to logic low(0) position before the reaching time is completed, the “#ARmp”

block output ramping stops. When the “Str” input is again logic high(1), the ramping process

continues from where it left off.

The analog value between the start and end values can be measured on the “#ARmp0” output.

Start value, stop value and reaching time can be entered from the block object properties and

from outside the block.

The logic must be applied logic high(1) to start from the "Str" input of the block and logic low(0) to

stop.

The ramping operation is reset and the output “#ARmp” is fixed to the initial value when the rising

edge trigger is applied to the block "Res" input.

The word, analog or long registers can be entered in the "Str", "Stp" and “Rea” inputs.

16.3.5 Sample Application

In the example; the blocks have been set starting value 1, ending value 8.6, and reaching time

20 seconds.

Initially Str input has been toggled to logic low(0) after a certain period of logic high(1) and O1

output stayed at 5.3943 because it did not reach the ramp end time.

Then the Str input is again logic high(1), the ramp completes the remaining reach time and

reaches the end value of 8.6.

The start value and end value graph on the time axis of reaching time are as follows.

426 Distributed Control Systems / Programming Manual

16.4 ON/OFF CONTROLLER

16.4.1 Connections

InA: Controller block input

#OOC0: Block output

TLw: Bottom threshold

THi: Upper threshold

THs: Threshold hysteresis

tON: ON standby time (ms)

tOFF: OFF standby time (ms)

16.4.2 Connection Explanations

InA: Controller block input

The controller block is the input. Can not be left blank.

TLw: Bottom threshold

The lower threshold input value

THi: Upper threshold

The upper threshold input value

THs: Threshold hysteresis

Threshold hysteresis input value. Hysteresis can also be added in control comparison.

tON: ON standby time (ms)

427 Distributed Control Systems / Programming Manual

When “#OOC0” output is in OFF state, if the block input compare condition becomes logical

high(1) position and this condition is satisfied for tON duration, “#OOC0” output turns ON

tOF: OFF standby time (ms)

When “#OOC0” output is in ON state, if the block input compare condition becomes logical

high(1) position and this condition is satisfied for tOFF duration, “#OOC0” output turns OFF

#OOC0: Block output

It is binary block output.

16.4.3 Block Settings

Bottom Threshold Value: Bottom threshold
value can be adjusted from within the block.

Upper Threshold Value: Upper threshold
value can be adjusted from within the block.

Threshold Hysteresis Value: Threshold
hysteresis value can be entered from within
the block.

Compare Type: Comparison method for ON
/ OFF control selected.

Alarm On Time(ms): Alarm on time value
can be adjusted from within the block.

Alarm Off Time(ms): Alarm off time value
can be adjusted from within the block.

428 Distributed Control Systems / Programming Manual

16.4.4 Block Explanation

The process value controlled in the ON - OFF method, which is one of the most basic control

methods, is operated by OFF or ON states. If the input value of the process meets the defined

conditions, output status is ON, otherwise output status is OFF.

Mikrodev ON/OFF control function block fulfills this basic ON-OFF control method with a

number of superior features. The following comparison types are used to check the process

input value.

Comparison Type Lower Threshold Value Upper Threshold Value

Between Active Active

Greater Active -

Smaller Active -

Out of Range Active Active

 Equal Active -

Smaller or Equal Active -

 Greater or equal Active -

Not equal Active -

tON or tOFF times are entered to prevent the output from fluctuating due to the instantaneous

faulty data and to add only the delay, even if the comparison operation requires state change.

When block output is OFF, block time counter is started if ON condition occurs at block input.

Block output is toggled to ON if ON condition does not change until tON time is reached. Similarly,

when block output is ON, block time starts when the OFF condition occurs at the block input, and

block output is OFF when the OFF condition does not change until tOFF time is reached.

Both values must be set to 0 to cancel tON and tOFF operations.

Hysteresis can be used in addition to the tON-tOFF mechanism if it is desired that the block output

does not make any sudden changes in particularly slowly changing signals relative to the process

input value and ambient noise.

In Hysteresis feature; when the output “#OOC0” changes from ON to OFF state and from OFF to

ON state , even if the input condition changes, if the hysteresis threshold is not exceeded , the

output state does not change. The output state changes when the hysteresis threshold is

exceeded.

429 Distributed Control Systems / Programming Manual

16.4.5 Sample Applications

16.4.5.1 Example 1

Block process input value has been controlled with ON-OFF control according to the compare

type Greater Than. The change in block outputs is delayed as much as the tON and tOFF time

values.

Alt Eşik

InA

#OOC0

tON: Open Time tOFF:Close Time

430 Distributed Control Systems / Programming Manual

16.4.5.2 Example 2

The block process input value is controlled with ON-OFF control according to the compare type

Greater Than. After the instance, the input value has satisfied the condition, the “#OOC0” output

is ON-delayed as long as the tON, then the “#OOC0” output is in logical high(1) position. (The

output of “OOC0” is logic high(1) after 1 second after the InA value has risen over 5).

Alt Eşik

InA

#OOC0

tON: Open Time

431 Distributed Control Systems / Programming Manual

16.4.5.3 Example 3

The block process input value is controlled with ON-OFF control according to the compare type

Greater Than. Hysteresis value is also entered, and hysteresis is activated.

In the hysteresis comparison method:

The transition from the OFF state of the block “OOC0” to the ON state will occur if "Compare point

is greater than threshold + hysteresis value." (If the value of InA is above 5 + 2 = 7, the output of

“OOC0” is logic high(1).)

The transition from the ON state to the OFF state of the block “OOC0” output will occur if Compare

Point is lower than Threshold-Hysteresis Value (if the value at the INA input is below 5-2 = 3, the

“OOC0” output is logic low(0)).

Note: The threshold hysteresis value and tON (turn on time) and tOFF (turn off time) features can

be used at the same time. tON or tOFF will get activated after hysteresis threshold is exceeded.

Alt Eşik

InA

OOC0

Alt Eşik +

Histeris
Alt Eşik - Histeris

432 Distributed Control Systems / Programming Manual

16.5 CHANGE DETECTOR

16.5.1 Connections

Up: Block input

#CDTC0: Block output

L/P: Change value

16.5.2 Connection Explanations

Up: Block input

It is the block input value from which to determine whether there is a change or not.

L/P: Change value

The change values can be selected from the L/P input from outside the block or from within the

block for the "percentage or level" options selected from within the block.

#CDTC0: Block output

This is the output for a one cycle pulse when there is a change over the change value determined

at the input of “Up”.

433 Distributed Control Systems / Programming Manual

16.5.3 Block Settings

Level: If selected, pulse occurs at #CDTC0

according to level change at Up input.

Percentage: When selected, a pulse occurs at
#CDTC0 according to the percentage change at the
Up input.

Value: At an output change (percentage or level)
greater than the input value, a pulse occurs at the
output.

16.5.4 Block Explanation

The Change Detector block is used when changes to any block value need to be monitored.

If the difference between the present value of the value at the “Up” entry and the next value is

greater than the specified percentage or level change value, a momentary pulse is generated at

the “#CDTC0” block output.

You should connect the block, when whose value changes the “#CDTC0” output should generate

a pulse, to the “Up” input .(Counter, register, etc.)

In the block options, the value change is selected as the percentage or level change.

To generate a pulse at output “#CDTC0”, the minimum change value of the “Up” input can be set

from the value window in the block options or from the L/P input outside the block.

434 Distributed Control Systems / Programming Manual

16.5.5 Sample Application

In the Example;

Level is selected as the Change Detector method, and 2 is selected as the level change value

from outside the block. When the value of the analog register at the input of “Up” changes more

than 2, a pulse is generated at the output of “O1”. Pulses are counted by the up counter

connected to the output “O1”.

17 SYSTEM BLOCKS

17.1 FIRST SCAN BIT

17.1.1 Connections

#FSBB0: Block output

435 Distributed Control Systems / Programming Manual

17.1.2 Connection Explanations

Sta: Block output

It is block output.

17.1.3 Block Settings

There are no block settings.

17.1.4 Block Explanation

This block generates logic(1) output when Logic Controller is activated and as long as it stays in

active state. It is used to bring the Logic Controller to reference values and states.

17.1.5 Sample Application

When PLC is started, the block gives logic(1) to block output.

17.2 RESET COUNTER

17.2.1 Connections

#ResC0: Block output

17.2.2 Connection Explanations

#ResCO: Block output

It is block output.

436 Distributed Control Systems / Programming Manual

17.2.3 Block Settings

There are no block settings.

17.2.4 Block Explanation

The reset count of the device is written to the output. After every power reset operation, output

block value is increased by one. If a logic project is loaded into the device, RESET counter

block value is set to “1”.

17.2.5 Sample Application

It is displayed the reset count of the device.

17.3 SYSTEM RESET

17.3.1 Connections

Trg: Trigger Input

17.3.2 Connection Explanations

Trg: Trigger input

It is block trigger input.

17.3.3 Block Settings

There are no block settings.

437 Distributed Control Systems / Programming Manual

17.3.4 Block Explanation

In case of rising edge trigger signal is applied to Trg input, the device performs a soft RESET.

17.3.5 Sample Application

When a value different from “0” is written on the word register connected to Trg input, the device

is reset.

438 Distributed Control Systems / Programming Manual

18 HVAC BLOCKS

18.1 FLOATING MOTOR

18.1.1 Connection

VAL: Valve opening level input (%)

#FMB0: Opening output

FOD: Full opening duration input

Clo: Closing output

MOD: Minimum opening duration
input

18.1.2 Connection Explanations

VAL: Valve opening level input (%)

It is the valve open level as a percentage (%).

FOD: Full opening duration input

It is the time duration from full closed to full opening.

MOD: Minimum opening time duration

It is the time duration for minimum opening time.

#FMB0: Opening output

It is the opening output which generates logic low(0) or logic high(1).

Clo: Closing output

It is the closing output which generates logic low(0) or logic high(1).

439 Distributed Control Systems / Programming Manual

18.1.3 Block Settings

Full Open Duration(ms): The full opening
time (FOD) can be entered from within the
block settings.

Min Open Duration(ms): Minimum
opening time (MOD) can be entered from
within the block settings.

18.1.4 Block Explanation

It is used in Proportional or PID control applications.

Equipment connected to the output will be turned on as long as the logic (1) signal sent from the

“#FMB0” output. The equipment connected to the output will shut down as long as the logic (1)

signal sent from the “Clo” output.

The "#FMB0" and "Clo" outputs of the block generate a logic low(0) or logic high(1) signal

according to their control status. The two outputs does not produce a logic high(1) signal at the

same time.

The time to one hundred percent opening time is specified in milliseconds in the Full Open

Duration (FOD). The minimum running time of the equipment is specified in Minimum Opening

Duration (MOD) in milliseconds. If the percentage change rate at the "VAL" entry corresponds to

a smaller value than the minimum opening duration "MOD", the run signal will not be sent to the

output. (If MOD: 1 sec, FOD: 100 sec. and the VAL change is greater than %1, the equipment

moves.)

440 Distributed Control Systems / Programming Manual

The "VAN" input specifies how much of the equipment should be opened in percent. Precise

data input can be achieved by connecting an analog register to this input.

32-bit long value can be entered for full opening and minimum opening values.

18.1.5 Sample Applications

In the examples;

The full opening time (FOD) was entered as 100 seconds. Minimum opening time (MOD) value

is 0. This means that the smallest change in the VAL input will also cause a change in the

outputs.

In the case of floating 1; The VAL input is entered 35 for the 35% opening of the initially closed

valve. The open output has been logic low(0) after becoming logic high(1) for 35 seconds. Thus,

Floating 1 valve was opened by 35%.

In the case of floating 2; The valve is initially opened at 35%. Then the opening of the valve was

reduced to 15%. The “Clo” output has been logic low(0) after becoming logic high(1) for 20

seconds. Thus, the Floating 2 valve open rate is reduced from 35% to 15%.

441 Distributed Control Systems / Programming Manual

18.2 AGING MANAGER

18.2.1 Connection

Ena: Enable input

#AgMan0: Working slave no

Sla: Slave count

18.2.2 Connection Explanations

Ena: Enable input

It is block activation input.

Sla: Slave together count

The number of slaves to be activated at the same time.

#AgMan0: Working slave no

It is the output of the block which shows the number of the running slave and connected to the

input of the "Mas" of the aging member blocks.

442 Distributed Control Systems / Programming Manual

18.2.3 Block Settings

Concurrent Slaves Count: The number of slaves
(member) connected to the block output which
will be active at the same time can be identified
from within the block.

18.2.4 Block Explanations

“#AgMan0” output connected to “Mas” input of aging member blocks, NOT used alone or with

other blocks.

As long as the logic high(1) signal is input to “Enb”, the block becomes active and activates the

connected aging members. Up to 10 aging members can be connected to the block output.

The number of aging member blocks which are active at the same time can be set from within

the block or from the block "Sla" entry. (Eg: if this value is set to 3 and 7 members are

connected to the “#AgMan0” output, 7 members will be active in groups of 3.)

443 Distributed Control Systems / Programming Manual

18.2.5 Sample Applications

The binary register is connected to the “Ena” input to activate the block.

The "Sla" input is linked to the word register to determine how many Aging Members will be

active at the same time.

On the block “#AgMan0” output there is information about which of the connected members is

running. This information is given as bits of the output value. For example, in the above

example, the output value equals 4, binary equals to “0100”, which means that the second slave

is active.

The output of this block in the ready state must be connected to the "Mas" input of the Aging

Member blocks.

444 Distributed Control Systems / Programming Manual

18.3 AGING MEMBER

18.3.1 Connections

Mas: Aging manager input

#AgMem0: Run time output IsR: Running info input

IsF: Error info input

Ena: Block activation input

Run: On/off output Agi: Aging time input

Run: Run time reset input

Run: Current Aging age input

Err: Block error output Fau: Error reset input

Fau: Timeout input for error

445 Distributed Control Systems / Programming Manual

18.3.2 Connection Explanations

Mas: Aging manager input

The "#AgMan0" output of the Aging Manager block is connected. Another type of block cannot

be connected.

IsR: Running info input

Equipment run information is entered.

IsF: Error info input

Equipment information such as thermal, fault, error is entered.

Ena: Block activation input

The block is activated by the logic high(1) signal.

Agi: Aging time input

The aging time in minutes.

Run: Run time reset input

With the rising edge trigger, the run time information on the block is reset.

Run: Aging age input

Aging members are the input of current working time information.

Fau: Error reset input

With the rising edge trigger, the error information at the block output is reset.

Fau: Timeout error input

It is the timeout error input for waiting time of error information from block output.

#AgMem0: Run time output

It is run time output for equipment running time in minutes.

Run: On/off output

It is on/off output for the equipment which is logic low(0) or logic high(1).

Err: Block err output

When block err input is logic high(1) or the timeout for the error exceeded, block err output is

logic high(1).

446 Distributed Control Systems / Programming Manual

18.3.3 Block Settings

Aging Time(minutes): The Aging Time in
minutes can be entered from within the
block.

Fault Time(second): The Fault Time in
minutes can be entered from within the
block.

18.3.4 Block Explanations

It is used in applications where several equipment must be started and stopped in sequence for

a certain period of time. It is also called aging.

This block is used when the pumps in a pump station are operated in the determined sequence

and durations. After a pump completes the aging period, it is stopped and another pump which

is included in the aging scenario period is started and the system enters into a cyclic loop and

the same pumps are used.

This block used with the Aging Manager block.

447 Distributed Control Systems / Programming Manual

Block Inputs Explanations

Mas The "#AgMan0" output of the Aging Manager block is connected to the "Mas" input.

IsR Operating information(On / Off) of the equipment is connected, logic low(0) or logic high(1)

IsF A thermal fault or other fault information can be entered to prevent the system from being
forced into operation. When the logic input (1) signal is input to the error input, the output
of the "IsF" at the block output becomes logic (1), and the equipment run output
"#AgMem0" at the block output changes to the logic (0) state to prevent further
malfunctions in the system.

Even if the error at block error input returns to logic (0), the error output at block “IsF" will
not turn to logic (0). The block error output is reset when the rising edge trigger is applied to
the block error reset input.

Ena Logic (1) must be applied for the block to be active. If you do not want to operate due to the
maintenance, malfunction, etc. of the equipment connected to the block, the "Ena" input is
disabled (0) and the equipment is deactivated. Other equipment in aging continues to work
in sequential order.

Agi The aging time is entered in minutes. The equipment connected to the block runs as long as
the aging time, then stops, the operating turn comes to the other equipment. It can be set
from inside and outside the block.

Run The runtime at the block output is reset at each rising edge trigger.

Run The current operating times of the equipment in the system are entered. Those with higher
run times are run less, balancing their run times, thus establishing standard run time periods.
The maintenance and replacement periods of the equipment are standardized.

Fau The rising edge trigger must be applied in this input to reset the fault when the block fault
output is at logical (1) state. (If the block has thermal, fault, error, etc. at the fault input, it
must be cleared before resetting.)

Fau There are two factors that cause the block error output to be logic (1). The first is the
information of the thermal, fault, error etc. coming to the fault input. 2nd is; If no operation
fault, or thermal information from the equipment is received even though the block output is
switched on, the error timeout period is taken into account. When the error timeout period
is exceeded, the block error output becomes logic (1).

Block Output Explanations

#AgMem0 It is the block runtime information in minutes. It can be reset at the rising edge trigger
applied to the reset runtime input “Run”

Run It is the connection output to the equipment to be operated. Since equipment On/Off control
with Mikrodev PLC products are made with digital output (DQ) or relay output (RQ); digital
output (DQ) or relay output (RQ) must be connected to the block output. If the equipment is
connected to the output, the digital output (DQ) or the relay output (RQ) block must be
selected.

Err It is the error output.

1- When any thermal, fault, error, etc. occurs at the block fault input, the error output
becomes logic (1).

2- If the running information does not seem to appear at “IsR” input even though On/Off
control logic is output (1), error output becomes logic (1) after the time out duration. In
order to reset the error output, the rising edge trigger must be applied on the error
reset input.

448 Distributed Control Systems / Programming Manual

18.3.5 Sample Applications

In the example;

2 Aging Member blocks have been added to an aging manager. The Aging Manager block’s

"Sla" input is entered as “1” which indicates that the members will be run “one by one”. Two

minutes were selected for both members as the aging period.

The relay output connected to the first member became logic (1) for 2 minutes, after 2 minutes

the first member output became logic (0) and the second member output became logic (1). After

2 minutes, the second member becomes logical (0) and the first member becomes logical (1)

again. The system has thus entered the periodic operation cycle.

449 Distributed Control Systems / Programming Manual

18.4 DEVNET MAIN

18.4.1 Connection

TCP: Connection parameters
input

#DNetMain0: Block connection
output

18.4.2 Connection Explanations

TCP: Connection parameters input

It is the input connection for parameters.

#DNetMain0: Block connection output

It is the output connection of the block

450 Distributed Control Systems / Programming Manual

18.4.3 Block Settings

Self DevNET ID: The device's ID

Timeout(ms): Timeout in milliseconds

Cycle Delay (ms): The cycle delay in
milliseconds

Waited DevNET ID: Waited DevNET
(Connected Device) ID

Destination DevNET ID: Destination DevNET
(Device to be connected) ID

Broadcast IP Adress: The IP address to
which the devices are connected

451 Distributed Control Systems / Programming Manual

18.4.4 Block Explanations

DevNET is a system that reads and writes data from one device selected via ethernet and

transfers the data to the DevNET register. This system can be thought of as a circular queue

structure.

It is a UDP-based protocol repetitive and cyclical package.

It is a multi-drop protocol and can be added to a single DEV-NET network with up to 65535

PLCs.

All nodes are on the same level and there is no Master / Slave structure.

The Ethernet port used in the PLC also supports other protocols.

Points are automatically synchronized according to their node addresses and messages they

receive.

Thanks to the wait time and timeout mechanisms, network changes can be adaptable. This

provides a superior level of robustness.

452 Distributed Control Systems / Programming Manual

Excellent compatibility with Mikrodev PLCs is ensured.

C1-C2 ... represents Device 1-Device 2.

Self DevNET Id found in the window is the DevNET Id of the device used.

The timeout period found in the window is the time that one of the devices in this DevNet

network is waiting for data from the previous device.

Cycle Delay, located in the window, is the "how long the device will wait for a cycle". A value

can be entered by subtracting 1 from the number of devices and multiplying the timeout value

by this value.

The Waited DevNET Id located in the window is the Id of the device to be read.

The TargetDevNET Id in the window is the Id of the device to which the data will be written.

The "Broadcast IP Address" located in the window is the address of the internet network to

which the devices are connected. (An example is 192.168.2.255, where the last 255 is entered

to allow access to all devices connected to this network.)

453 Distributed Control Systems / Programming Manual

18.5 DEVNET REGISTER

18.5.1 Connection

#DNetReg0: Block connection output

18.5.2 Connection Explanations

Val: Block connection output

It is the block output connection.

18.5.3 Block Settings

Remote DevNET ID: The Id of the device from which
the data will be read

Remote Block Number: It is the Modbus address of the
block at the device from which the data will be read

454 Distributed Control Systems / Programming Manual

18.5.4 Block Explanations

The data of the registers in the device connected via the Ethernet network is transferred into this

block.

On the remote DevNET Id field of the window, the ID of the device to be read the data is written.

The field which is labeled as Remote Block Number in the window is the Modbus address of the

device to be read.

Warning!! To read with this block, "Sync with DevNET" option also must be checked on the

other device.

455 Distributed Control Systems / Programming Manual

19 MULTIPLEXER BLOCKS

19.1 ANALOG QUART MULTIPLEXER

19.1.1 Connections

I1: Analog quart multiplexer input

#AQMux0: Analog quart
multiplexer output

I2: Analog quart multiplexer input

I3: Analog quart multiplexer input

I4: Analog quart multiplexer input

S1: Analog quart multiplexer select
input 1

S2: Analog quart multiplexer select
input 2

19.1.2 Connection Explanations

I1: Analog quart multiplexer input

is an Analog value input that can be written to the output depending on the value of the “S1” and

“S2” block inputs. Analog Register block can be connected

I2: Analog quart multiplexer input

It is an Analog value input that can be written to the output depending on the value of the “S1”

and “S2” block inputs. Analog Register block can be connected

I3: Analog quart multiplexer input

It is an Analog value input that can be written to the output depending on the value of the “S1”

and “S2” block inputs. Analog Register block can be connected

I4: Analog quart multiplexer input

456 Distributed Control Systems / Programming Manual

It is an Analog value input that can be written to the output depending on the value of the “S1”

and “S2” block inputs. Analog Register block can be connected

S1: Analog quart multiplexer select input 1

It is the input in which which of the “I1”, “I2”, “I3” and “I4” block inputs to output is determined

according to the truth table. The Binary Register block can be linked.

S2: Analog quart multiplexer select input 1

It is the input in which which of the “I1”, “I2”, “I3” and “I4” block inputs to output is determined

according to the truth table. The Binary Register block can be linked.

#AQMux0: Analog quart multiplexer output

It is the output connection where one of the “I1”, “I2”, “I3” and “I4 block inputs” is written, which

is determined according to the truth table from the “S1” and “S2” block inputs.

19.1.3 Block Settings

In1: First value can be chosen from inside
of the block.

In2: Second value can be chosen from
inside of the block.

In3:Third value can be chosen from inside
of the block.

In4: Fourth value can be chosen from
inside of the block.

457 Distributed Control Systems / Programming Manual

19.1.4 Block Explanations

One of the inputs is selected among the four inputs and transferred to the block output. The

input which will be transferred to the block output is determined with S1 and S2 selection inputs.

In order to transfer the I1 input to the block output; S1:must be logic(0), S2:must be logic(0)

In order to transfer the I2 input to the block output; S1:must be logic(1), S2: must be logic(0)

In order to transfer the I3 input to the block output; S1:must be logic(0), S2: must be logic(1)

In order to transfer the I4 input to the block output; S1:must be logic(1), S2:must be logic(1)

The input value is transfered to the block output as a 32 bit analog value

19.1.4.1 Truth Table

According to the “S1” and “S2” inputs of the Analog Quad Selector block, which input will be

written to the output is specified in the following truth table.

S1 S2 #AQMux0

1 1 I4

0 1 I3

1 0 I2

0 0 I1

458 Distributed Control Systems / Programming Manual

19.1.5 Sample Application

In the example;

According to logic states of the Analog Quart Multiplexer’s selection inputs (S) , the values in

the inputs and O1 output are showed. In the example I4 is selected by setting both S1 and S2 to

logic(1). (For logic (0) to the S choosing input shold be 0; for logic (1) any value which is

different from zero is valid.

459 Distributed Control Systems / Programming Manual

19.2 WORD DUAL MULTIPLEXER

19.2.1 Connections

I1: Word dual multiplexer input

#WDMux0: Word dual
multiplexer output

I2: Word dual multiplexer input

S: Word dual multiplexer selection
input

19.2.2 Connection Explanations

I1: Word dual multiplexer input

Depending on the value of the “S” block input, it is the word value input that is likely to be written

to the output. Word Writer block can be connected.

I2: Word dual multiplexer input

Depending on the value of the “S” block input, it is the word value input that is likely to be written

to the output. Word Writer block can be connected.

S: Word dual multiplexer selection input

It is the input that determines which of the “I1” or “I2” block inputs will be output, according to the

truth table. Binary Register block can be connected.

#WDMux0: Word dual multiplexer output

It is the block output that writes one of the word register block values connected to the "I1" or

"I2" block input according to the truth table in line with the value of the "S" block input.

19.2.3 Block Setting

There are no block settings.

19.2.4 Block Explanation

One of the inputs is selected among the two inputs and transferred to the block output. The

input which will be transferred to the block output is determined with S selection input

460 Distributed Control Systems / Programming Manual

In order to transfer the I1 input to the block output; S:must be logic(0)

In order to transfer the I2 input to the block output; S:must be logic(1)

The input value is transfered to the block output as a 16 bit word value

19.2.4.1 Truth Table

According to the “S” block input value of the Word Binary Selector block, which input will be

written to the output is specified in the truth table below.

S #WDMux0

0 I1

1 I2

19.2.5 Sample Application

In the example;

According to logic states of the Word Dual Multiplexer’s selection input (S) , the values in the

inputs and O1 output are showed. In the example different inputs are selected by setting both S

to logic(1) or logic(0). (For logic (0) to the S choosing input shold be 0; for logic (1) any value

which is different from zero is valid.

461 Distributed Control Systems / Programming Manual

19.3 LONG DUAL MULTIPLEXER

19.3.1 Connections

I1: It is input which is long dual
multiplexer.

#LDMux0: It is output
which is long dual
multiplexer

I2: It is input which is long dual
multiplexer.

S: It is input which is long dual
multiplexer choice input

19.3.2 Connection Explanations

I1: It is input which is long dual multiplexer

It is the Long value input that is likely to be written to the output depending on the value of the

“S” input. Long Register block can be connected.

I2: It is input which is long dual multiplexer

It is the Long value input that is likely to be written to the output depending on the value of the

“S” input. Long Register block can be connected.

S: It is input which is long dual multiplexer choice input

It is the input that determines which of the “I1” or “I2” block input values will be given to the

output, according to the truth table. Binary Register block can be connected.

#LDMux0: It is output which is long dual multiplexer

It is the block output that writes one of the block values of the Long Register connected to the

“I1” or “I2” block input according to the truth table in line with the value of the “S” block input.

19.3.3 Block Settings

There is no block settings.

19.3.4 Block Explanation

One of the inputs is selected among the two inputs and transferred to the block output. The

input which will be transferred to the block output is determined with S selection input

In order to transfer the I1 input to the block output; S:must be logic(0)

462 Distributed Control Systems / Programming Manual

In order to transfer the I2 input to the block output; S:must be logic(1)

The input value is transfered to the block output as a 32 bit long value

19.3.4.1 Truth Table

According to the “S” block input value of the Lord Binary Selector block, which input will be

written to the output is specified in the truth table below.

S #LDMux0

0 I1

1 I2

19.3.5 Sample Application

In the example ;

According to logic states of the Long Dual Multiplexer’s selection input (S) , the values in the

inputs and O1 output are showed. In the example different inputs are selected by setting both S

to logic(1) or logic(0). (For logic (0) to the S choosing input shold be 0; for logic (1) any value

which is different from zero is valid.

463 Distributed Control Systems / Programming Manual

19.4 ANALOG Dual Multiplexer

19.4.1 Connections

I1: Analog dual multiplexer input

#ADMux0: Analog dual
multiplexer output

I2: Analog dual multiplexer input

S: Analog dual multiplexer selection
input

19.4.2 Connection Explanations

I1: Analog dual multiplexer input

It is an Analog value input that can be written to the output depending on the value of the “S”

input. Analog Register block can be connected.

I2: Analog dual multiplexer input

It is an Analog value input that can be written to the output depending on the value of the “S”

input. Analog Register block can be connected.

S: Analog dual multiplexer selection input

It is the input that determines which of the “I1” or “I2” block input values will be given to the output,

according to the truth table. Binary Register block can be connected.

#ADMux0: Analog dual multiplexer output

It is the output of the analog dual multiplexer block which is 32 bit. It is the block output that

writes one of the Analog Register block values connected to the “I1” or “I2” block input

according to the truth table in line with the value of the “S” block input.

19.4.3 Block Settings

There are no block settings.

19.4.4 Block Explanation

One of the inputs is selected among the two inputs and transferred to the block output. The

input which will be transferred to the block output is determined with S selection input

In order to transfer the I1 input to the block output; S:must be logic(0)

464 Distributed Control Systems / Programming Manual

In order to transfer the I2 input to the block output; S:must be logic(1)

The input value is transfered to the block output as a 32 bit analog value

19.4.4.1 Truth Table

According to the “S” block input value of the Analog Dual Multiplexer block, which input will be

written to the output is specified in the truth table below.

S #ADMux0

0 I1

1 I2

19.4.5 Sample Application

In the example;

According to logic states of the Analog Dual Multiplexer’s selection input (S) , the values in the

inputs and O1 output are showed. In the example different inputs are selected by setting both S

to logic(1) or logic(0). (For logic (0) to the S choosing input shold be 0; for logic (1) any value

which is different from zero is valid.

465 Distributed Control Systems / Programming Manual

20 MOTION CONTROL BLOCKS

20.1 FAST COUNTER INPUT

20.1.1 Connections

Res: Reset input

#FC0: Total pulse count

T: Time Period for Frequency
Calculation

Int: Pulse count within a period
cycle

Tar: Target pulse count

Tar: Pulse number target reached Dir: Counting direction Up or
Down

20.1.2 Connection Explanations

Res: Reset input

Reset the total pulse count kept inside the block.

T: Period input

Specifies the period in units of milliseconds.

Tar: Target pulse count input

Specifies the target pulse count

Dir: Count direction input

“1: Up, 0: Down. Specifies the counting direction.

#FC0: Total pulse count

Total pulse count after Reset

Int: Pulse count in a period cycle

Output that gives the counted pulses within a period cycle.

Tar: Target Value Reached

Indicates whether the target value is reached or not.

466 Distributed Control Systems / Programming Manual

20.1.3 Block Settings

Reserved Fast Counter Input No: Specifies
which fast counter channel will be used by
the block.

Tick Count Direction: Specifies the
counting direction.

Do direction control by using: Specifies
whether hardware or software is
controlling the counting direction.
If Hardware is selected, fast counter
channel work as encoder input.

Time Period: Millisecond based time
period for frequency calculation

Target Value: Target count value is entered
here

Reset total tick count when reached to
target value: Makes the block reset when
the count reaches to the target value.

20.1.4 Block Explanation

Fast counter blocks are used to count digital pulse input signals. Fast Counter Blocks are

different from other up/down counters because of using of hardware fast counter channels.

Therefore, Fast counter blocks can be able to count much more faster signal than software

counter.

First output of the block (#FC0) indicates the total ticks counted. This value is reset when the

device is reset or when a rising edge is detected on reset input of the block. It counts up or

down with each incoming pulse signal.

467 Distributed Control Systems / Programming Manual

“T” value indicates the time period which the pulses are counted in. Number of pulse count in

defined period “T” is written to “Int” output of the block. “T” has the units of milliseconds. For

example, if T=1000 (means 1000 millisecond), than the “Int” output of the block will show he

frequency of the input digital signal connected to related fast counter input.

Note: If the period value of the “T” block input time is 0, the total number value is read at the

second output.

With “Target Val” input, a target value is specified and when the target value is reached a pulse

is sent out from the third output (“Target Reached”) of the block. If the “Target Val” input is equal

to 0, then the mechanism is disabled. If the “reset when target value is reached” option is

activated, total count and the “Target Reached” output of the block is reset when the target

value is reached. A target value can be specified only when counting up.

If a high signal is applied to the “Res” input of the block, total count value will be reset.

Fast counters counts in the signed 32-bit format. Count value can vary between the values -

2147483648 and 2147483648.

20.2 PULSE WIDTH MODULATION (PWM)

20.2.1 Connections

Str: Start / Stop input

Fre: Frequency input

Dut: Duty Cycle input

468 Distributed Control Systems / Programming Manual

20.2.2 Connection Explanations

Str: Start/stop input

Input for Start/Stop signal. If it is 0, PWM signal is shut down and related PWM channel

becomes a normal digital output. If it is 1, PWM signal is activated.

Fre: Frequency input

Input for the frequency. Any value between 2Hz – 60000Hz(60 kHz) can be entered.

Dut: Duty cycle input

Input for duty cycle. Duty cycle percentage is entered as an number between 0-100.

Note: In order to activate the block, the “AT+PT0=1” command should be sent from the

Mikroterminal and reset to the device to be used

20.2.3 Block Settings

Reserved PWM Output No:

If 0, DQ0 channel is used as PWM
If 1 DQ1 channel is used as PWM
If 2 DQ2 channel is used as PWM
If 3 DQ3 channel is used as PWM

Frequency(Hz): Frequency is specified
here.

Duty(%): A percentage value is entered
here.

Can be used with default Polarity,
Alignment and Frequency settings.

469 Distributed Control Systems / Programming Manual

20.2.4 Block Explanation

PWM block is used to control the PWM outputs of the device.

“Dut” input of the block specifies the duration of the high and low parts of the signal with a specified

frequency. According to the “Duty” value determined from the PWM block input or block

properties, it sets how many percent of the pulse width at the desired frequency should be a high

signal; how many percent should be a low signal.

“Str” input of the block stands for “Start/Stop”. When a high signal applied to the “Str” input, PWM

Block is activated and starts to generate PWM signal. When a low signal is applied to the “Str”

input, the block is deactivated and PWM output serves as a normal digital output. If this input is

low-level (0), the PWM will be passive, and the corresponding PWM output will serve as the

normal digital output.

“Fre” input is used to change the frequency externally. It can be left blank and can be set in the

Block Settings menu. Since all the PWM channels in the device are using the same timing source,

frequency value is the same for all the PWM channels. Whichever block’s frequency is changed

most recently, all the other blocks will have the same frequency.

“Dut” input of the block can be set externally or can be set in Block Settings. Different duty cycle

values can be assigned to the different blocks, independent from each other.

Block serves as a PWM signal generator when the PWM channel is active, and serves as a

normal digital output when the PWM channel is passive.

20.2.5 Sample Application

470 Distributed Control Systems / Programming Manual

20.3 PULSE TRAIN OUTPUT

20.3.1 Connections

Sta: Start input

#PTO0: Signal output

En: Enable input

Sta: Start speed input

Sta: Start pulse number input

Mov: Operating speed input

Sto Stop speed input

Sto: Stop pulse number input

Tot: Total pulse number input

20.3.2 Connection Explanations

Sta: Start input

It is the input for starting PTO. It is the trigger input to start the pulse train output according to

the updated settings.

En: Enable input

It is the input for activation PTO. The PTO can also be used as an emergency stop input, the

pulse train stops when this input is 0.

Sta: Start Speed input

It is input to set starting speed. “Start Speed” specifies starting speed of the PTO during

acceleration phase. The value entered here is width of the pulse and considered as 10 µs

multiplier.

Sta: Start pulse count input

It is the input to set starting pulse count. Specifies the number of pulses in acceleration phase.

PTO automatically performs acceleration using start speed, normal speed and start pulse count

parameters.

471 Distributed Control Systems / Programming Manual

Mov: Operating speed input

It is an operating speed input that specifies normal operating speed. The value entered here is

the width of the pulse and considered as 10 µs multiplier.

Sto: Stop speed input

It is the input for stop speed. If there is going to be a deceleration during the stop process, the

speed just before the stop moment must be entered. The value entered here is the width of the

pulse and considered as 10 µs multiplier.

Tot: Total pulse input

It is the input for total pulse number that specifies the total number of pulses, including the

acceleration, deceleration and stop processes.

#PTO0: Signal output

It is the output for the signal. PTO generates high output after total pulse count reached.

Note: In order to activate the block, the command “AT+PT0=1” must be sent from the

Mikroterminal and the device to be used must be reset.

472 Distributed Control Systems / Programming Manual

20.3.3 Block Settings

Reserved PTO Output No
If 0, DQ0 channel is used as PTO
If 1 DQ1 channel is used as PTO
If 2 DQ2 channel is used as PTO
If 3 DQ3 channel is used as PTO

Start Speed: Start speed to begin
acceleration

Accelerate Pulse Count: Number of pulses
during the acceleration process

Move Speed: Normal operating speed

Stop Speed: In deceleration process, the
speed just before the moment PTO stops.

Decelerate Pulse Count: Number of pulses
during the deceleration process.

Total Pulse Count: Total number of pulses

20.3.4 Block Explanation

It is used to make a controlled step input motion by sending a certain number of pulses.

Acceleration, constant motion and deceleration functions are performed by controlling the pulse

width and the number of pulses.

473 Distributed Control Systems / Programming Manual

If Acceleration and Deceleration functions are not required, corresponding pulse count

parameters must be set to 0.

Total pulse count parameter is sum of pulse count of Accelaration, Constant Speed, Deceleration

phases.

Acceleration phase; Acceleration is start from “Initial pulse width” to “Constant speed pulse width”

and acceleration speed is controlled by acceleration pulse count parameter. The same applies to

the deceleration cycle.

The value entered as pulse width information is evaluated as 10 µs on the device side. For

example, for input pulse width of 120 us, input must be written 12.

ACCELERATION CONSTANT SPEED

DECELERATION

Speed /

Time

IN[2]: Starting Pulse

Width

IN[3]: Acceleration

Pulse Count

IN[6]: Deceleration

Pulse Count

IN[5]: Width of Last Pulse
IN[4]: Constant Speed

Pulse Width

 IN[7]: Total Pulse Count

Acceleration + Constant + Deceleration

Pulse Width = 10us * <IN[x]>

Pulse Width of Speed α

474 Distributed Control Systems / Programming Manual

After the PTO block starts to work, the output signal of the block goes to Logic(0) . After the total

number of pulses is completed, the "#PTO0" output goes to Logic(1). Connecting to “#PTO0”

output to another PTO block inputs result in controlling multiple PTO blocks together.

20.4 AXIS DEFINITON

20.4.1 Connections

Ena: Enable input of the block

#Axis0: Absolute position at axis

Go: Go home command input Sta: Status

Hom: Home indicator Dir: Direction

20.4.2 Connection Explanations

Ena: Enable input of the block

It can be used as an emergency stop or to enable axis movement.

Go: Go home command input

Homing command input

Hom: Home indicator

It reads whether it is in HOME position through this input.

#Axis0: Absolute Position

It is the output of the block that gives the absolute position at the axis

Sta: Binary output

It is the output of the block that indicates the state of the motor.

Dir: Binary output

It is the output of the block that indicates the direction of the motor.

475 Distributed Control Systems / Programming Manual

20.4.3 Block Settings

Axis Number: Specifies the output
which the axis block will be using

Axis Unit: Machine Unit: Moves in
units of millimeters. Motor Unit:
Moves in units of pulses.

Axis Type: Specifies how to reach the
deisred position.

Encoder Number: Specifies the
encoder number.

TurnHome Way: Specifies the
direction when going to home
position.

Axis Range: Specifies the required
number of pulses during one
complete lap of motor.

Move/Rev: Specifies the speed when
in Machine unit mode.

Pulse/Rev: Specifies the speed when
in Motor Unit mode.

Max Speed(Pulse/Second): Specifies
the maximum speed when operating.

TurnHome Speed: Specifies the
speed when motor is returning to
home position.

Bacward Compensation: Ramp
amount when moving backwards.

Forward Compensation: Ramp
amount when moving forward.

476 Distributed Control Systems / Programming Manual

20.4.4 Block Explanation

This block is used to control the position of the system on the axis. The block keeps the last

position of the system and using this info control the Pulse Train Outputs to realize position aware

movement.

When a Logic(1) signal is applied to “Go Home” input of the block, PLC starts to drive the motion

system until Logic(1) signal appears at “Home” input of the block. If homing process is started

while it is already at home position, PLC starts homing process to calculate axis length per pulse

count.

“Axis Number” specifies PTO channel of the Axis block.

- If Axis Number is 1, output will be at PTO channel 0 - DQ0

- If Axis Number is 2, output will be at PTO channel 1 – DQ1

- If Axis Number is 3, output will be at PTO channel 2 – DQ2

- If Axis Number is 4, output will be at PTO channel 3 – DQ3

If an axis block is used in the project, PTO blocks cannot be used anymore for this channel.

To use the axis block, AT+PTO=1 command must be sent to the device using Mikroterminal to

make digital outputs pulse outputs. DO0, DO1, DO2, DO3 cannot be used for any other purposes

anymore.

Axis and machine moves in units of millimeters: Machine Unit: Moves in units of millimeters. Motor

unit moves in the units of pulses.

Axis type: Determines how the motor reaches the desired position. If “circular” is selected, desired

position will be reached by the shortest path. If “linear” is selected, when the starting point is

reached, motor starts to move at the opposite direction, and then reaches to the desired position.

This way, if there is a cable attached to the motor it will not be damaged.

Turn home way: specifies the direction of the motor when going back to starting point.

Axis range: Required pulse amount for a lap is entered here.

477 Distributed Control Systems / Programming Manual

Move/Rev: In Machine Unit option, defines the speed. Speed of the motor is reversely proportional

with the number entered here. It has the units of milliseconds.

MaxSpeed(Pulse,sec): Defines the maximum speed of the motor when operating. The number is

reversely proportional with the speed of the motor. It has units of microseconds.

Turn Home Speed: Defines the speed when going to starting point. It is reversely proportional

with the speed of the motor. It has units of microseconds.

Backward Compensation: Compensation value for turning in reverse direction.

Forward Compensation: Compensation value for turning in forward direction.

20.5 AXIS CONTROL

20.5.1 Connections

Sta: Start command

#AxCon0: Pulse output

Abs: Target Position

Wor: Input for motor speed

Sta: Input for starting speed.

Acc: Input for acceleration

duration

Cou: Output of the block

Dec: Input for deceleration

duration

Mov: Target position input

Dir: Direction Input

478 Distributed Control Systems / Programming Manual

20.5.2 Connection Explanations

Sta: Start command binary input:

When a signal is applied to this input, block start to drive system.

Abs: Target position

Determines the target position.

Wor: Input for motor speed:

Motor speed is setting by connecting a word register to this input.

Sta: Input for starting speed:

Specifies the ramp speed before reaching to the target input.

Acc: Input for acceleration duration:

Specifies the duration of acceleration of the motor.

Dec: Input for deceleration duration:

Specifies the duration of deceleration of the motor.

Mov: Target position input:

Specifies the target position, using word or long register.

Dir: Direction input:

Specifies the direction of the motion. 1: forward, 0: reverse.

#AxCon0: Pulse output:

When the block produces a pulse, this output generates a momentary signal.

Cou: Binary output

Gives a binary output.

479 Distributed Control Systems / Programming Manual

20.5.3 Block Settings

 Axis Number: Specifies the axis number.

TargetSpeed(pulse/sec,mm/sec): Specifies the
target speed.

Start/Stop Speed(pulse/sec,mm/sec): Specifies the
start and stop speed of the motor.

Acceleration Duration: Specifies the acceleration
duration.

Deceleration Duration: Specifies the deceleration
duration.

20.5.4 Block Explanation

It is used to stabilize the position of the servo motor.

Sta: When the signal is applied to the “Sta” input, block starts to send out pulses.

Wor: A word register block is connected to this input to adjust the motor speed. It can be set in

the Block Settings menu either. It is reversely proportional to the speed of the motor. It can be set

in the Block Settings menu. It has units of microseconds.

Sta: Specifies the ramp speed before reaching the target speed. It is used when accelerating

and decelerating. It can be set in the Block Settings menu. It has units of microseconds.

480 Distributed Control Systems / Programming Manual

Acc: Specifies the acceleration time of the motor. Desired value can be entered in Block

Settings menu either.

Dec: Specifies the deceleration time of the motor. Desired value can be entered in Block

Settings menu either.

Mov: Specifies the target position. By connecting a word or long register required pulse count is

indicated.

Dir: Specifies the direction of the movement. 1 means forward, 0 means reverse direction.

#AxCon0: It is a pulse output. When block produces a pulse, gives a pulse signal.

Cou: Gives a binary output.

“Axis Number” specifies the output of the Axis Control Block.

21 SERIAL COMMUNICATION BLOCKS

21.1 Rx Packet

21.1.1 Connections

Cha: Channel Input

#RxP0: Block Output

21.1.2 Connection Explanations

Cha: Channel Input

It is the channel input connection.

#RxP0: Block Output

The block number is the output connection.

481 Distributed Control Systems / Programming Manual

21.1.3 Block Settings

Parse Method: Evaluates the incoming
data according to the exception set in the
tab.

FrameTimeOut(ms): It reads the incoming
data packet within the ms value specified
here.

Paket Boyutu: It determines the size of the
incoming data packet in bytes.

SOF: This is the field where the starting
character of the incoming data packet is
entered.

EOF: This is the field where the ending
character of the incoming data packet is
entered.

21.1.4 Block Explanation

Rx Packet block is used to define the incoming data. It checks whether the incoming data is in

accordance with the rules determined in the block special settings. If appropriate, it sends it to

the Packet Parser block. If it is not appropriate, it does not evaluate the incoming data.

482 Distributed Control Systems / Programming Manual

21.2 Packet Parser

21.2.1 Connections

RxP: Rx packet input

#PPar0: Parsed result output

isR: Result valid output

21.2.2 Connection Explanations

RxP: Rx packet input

The output of the Rx Packet block is connected to the “RxP” input of the Packet Parser block.

#PPar0: Parsed result output

Parceled data value is output

isR: Result valid output

Output that generates 1 rising edge trigger at the end of each successful plot.

483 Distributed Control Systems / Programming Manual

21.2.3 Block Settings

Parse Segment Type: How to split the
incoming data packet is selected under this
tab.

Parse Value Type: The value type of the
data to be parsed.

Segment:

ValueIndex: After which index the incoming
data packet should be separated is entered
here.

Text Offset:

ValueLen: After which index the incoming
data packet should be separated is entered
here.

21.2.4 Block Explanation

It is used to pars the incoming data. Data is transmitted in packets between devices. In order to

turn these data packets into usable information, these packets need to be decomposed. The

packet parser block divides the incoming data packets into parts according to the rules we have

determined from the block properties.

484 Distributed Control Systems / Programming Manual

21.2.5 Sample Application

For the example, we have chosen the decoding method of the Rx packet block as

"Beginning/End of Packet". The beginning-of-package character is A and the end-of-package

character is B. Index ranges are determined by connecting a packet parser block to its output.

485 Distributed Control Systems / Programming Manual

For example, when 41 01 00 02 00 FF 00 FF 00 42 is sent in hex base, the characters at the

beginning of the packet and the end of the packet match (41 : A , 42:B) and the data packets

are formed if the 8 bytes are in between.

For 01 00 first data, the value 1 appears at the output of the block.

01 00 --> 00 01 becomes 1 when converted from hex to decimal.

FF 00 --> 00FF hex to decimals becomes 255.

486 Distributed Control Systems / Programming Manual

21.3 Tx Packet

21.3.1 Connections

Cha: Block connection input

#TxPAc0: Block output
Val: Block value input

Tx: Trigger input

21.3.2 Connection Explanations

Cha: Block connection input

Serial port is the input connection to which the block output is connected.

Val: Block value input

The values that we send from this input form the data to be included in the data package to be

sent.

Tx: Trigger input

Each time a rising edge trigger comes to the “Tx” block input, it sends a data packet from the

“#TxPac0” block output.

#TxPAc0: Block output

After the data is packaged, it is sent as packet data from the “#TxPac0” block output.

487 Distributed Control Systems / Programming Manual

21.3.3 Block Settings

Checksum Type:

Operation Type: Specifies the type of data
to be sent

Message: The data package form to be
sent is entered. Ex: “ C1DDE” C: start E:
end character

ValueIndex: The data in the message to be
sent starts from the 2nd Index.
If this value is 0; Adds Data and Serial
number to log record; If it is 1, it does not
add.

ValueLen: The size of the data to be sent in
bytes is entered here.

21.3.4 Block Explanation

In order for the data to be sent to be detected by other devices, it must be converted into a data

packet form according to some rules and sent. Tx Packet block converts the data to be sent

from the “Val” block input into a packet and sends a data packet from the “#TxPac0” block

output.

488 Distributed Control Systems / Programming Manual

21.3.5 Sample Application

In the above example application, the value 7 is sent with the Tx Packet block and is read by the

Docklight application, which is a serial port simulation.

In the picture on the side, the rules to package and send the

data to be sent in the Tx Packet block are set.

489 Distributed Control Systems / Programming Manual

21.4 Serial Gateway

21.4.1 Connections

Rem: Connection input

Loc: Connection input

Tx: Data size input

Tx: Data TimeOut time input

21.4.2 Connection Explanations

Rem: Connection input

The port input to which the remote device is connected is set.

Loc: Connection input

It is the serial port input to which the locally operating device is connected.

Tx: Data size input

It is the input where the size of the data to be sent is set.

#Tx: Data TimeOut time input

It is the input of the “timeout” duration of the data to be sent.

490 Distributed Control Systems / Programming Manual

21.4.3 Block Settings

Buffer Size: It is the size of the value in
bytes of the data to be sent in a single
packet. This value can also be determined
from the “Tx” block input.

Buffer Timeout (milliseconds): This is the
place where the “timeout” period of the
data to be sent is entered. This value can
also be determined from the “Tx” block
input.:

21.4.4 Block Explanation

It is the block used to provide transparent data transmission. It provides data transmission

between the Serial Port block and the remotely connected device independent of any protocol.

21.4.5 Sample Application

In the next picture:

Connection settings of the device connected

remotely with TCP Socket block are entered.

The connection settings of the device connected to

the PLC working locally with the Serial Port Block are

entered via the Serial port connection. In this way,

communication is provided between the device that

communicates through the serial port working locally

and the device that is connected remotely, using the Serial Gateway block.

491 Distributed Control Systems / Programming Manual

Hercules app for remote device simulation,

Example using Docklight for serial connection simulation,

In the simulation application above, the "Hello, I'm Docklight" message sent as ASCII over the

Serial Port was read by Hercules and the "Hello, I'm Hercules" message sent by Hercules was

read by Docklight.

492 Distributed Control Systems / Programming Manual

22 STRING BLOCKS

22.1 STRING REFERANCE

22.1.1 Connections

#StrRef0: String data output

22.1.2 Connection Explanations

#StrRef0: String data output

String data output is a reference connection.

22.1.3 Block Settings

String Offset: It is the part of the string table where
the data to be used is selected.

493 Distributed Control Systems / Programming Manual

22.1.4 Block Explanation

It is used to select and use the desired index in the String Table for blocks that process or input

texts (String - Text).

”String table” part is pushed from project tab in order to reach String table on the Mikrodiagram

or Telediagram

From on the String table will be used string contains such as (number, message containing etc.)

can be entered in the String table. Each line can have max 63 characters on the String table.

When the do program can be used string reference in order to use values which have been

recorded on the String table. Send and receiving SMS, acception calling and doing research on

blocks and entered numbers and message content are identified from the String Reference block

. SMS content where is on string table and choosing telephone number is done from the string

reference block’s “string offset”.

494 Distributed Control Systems / Programming Manual

22.2 STRING MANIPULATION

22.2.1 Connections

InA: First string value input

#StrM0: String change output InB: Second string value input

Trg: Trigger input

22.2.2 Connection Explanations

InA: First string value input

It is first string’s input.

InB: Second string value input

It is second string’s input.

Trg: Trigger input

It is trigger input from block.

#StrM0: String change output

It is string changing block connection.

495 Distributed Control Systems / Programming Manual

22.2.3 Block Setting

Text Offset: Result of operation which is written on
String table is determined the index.

String Math: The part of the process to be done is
selected.

On When Trig is Active: If selected; When the rising
edge (logic (1)) trigger comes to the block “Ttk” block
input, the action is taken.

Write On Input: If selected; The value at the “InA”
block input and the value at the “InB” block input are
processed, and the result is written to the “InA” block
input.

22.2.4 Block Explantion

As do operation on the string reference result of operation new string is written to string offset. It

which is operate type is as operate on the strings produce the string againly.

String format data to transformer, ToString, Join, Append (add to end), Clear, Replace is used

for doing operation.

When convert to string function is selected; A word or long register is connected to the “InA”

input. In the “InB” input, the text to which the value entered in the “InA” input will be written is

selected with a string reference. The number of digits to be read to the part where the value

entered from the “InA” input will be written should be specified with the expression “%s”. Word,

Long and Analog values are converted to text with this operation. The result is written to the

string table index selected from the String Offset in the block options.

When the Combine function is selected; The string reference connected to the “InA” input is

combined with the string reference connected to the “InB” input. The result is written to the

string table index selected from the String Offset in the block options.

496 Distributed Control Systems / Programming Manual

When the append function is selected; The string reference linked to the “InB” input is appended

to the end of the string reference linked to the “InA” input. The result is written to the string table

index selected from the String Offset in the block options.

Process Entries Used Explanation

ToString InA, InB The value to be converted into text is entered from the long or
word register value connected to the “InA” input. If the text to be
connected to the “InB” input is from the reference block, the
number of digits to be read from the “InA” input value should be
specified with the expression “%s”. The value to be converted to
text is saved in the string table index selected from the text offset
part of the block options. (For example: If InA= 539 , InB= %03s, the
number 539 is saved in the table index, the text selected from the
text offset part of the text change block options.)

Join InA, InB When the Join function is selected; The string reference connected
to the “InA” input is combined with the string reference connected
to the “InB” input. The result is written to the string table index
selected from the String Offset in the block options. (Ex: InA=micro,
InB=dev Result=mikrodev)

Append InA, InB When the append function is selected; The string reference linked
to the “InB” input is appended to the end of the string reference
linked to the “InA” input. The result is written to the string table
index selected from the String Offset in the block options. (Ex:
InA=micro, InB=dev Result=mikrodev)

497 Distributed Control Systems / Programming Manual

22.2.5 Sample Application

The data from the word register connected to the inA input will be converted to string value

with the expression "% s" at the inB input. When the trigger is active is signed when only DI0

logic high(1) signal comes will operate.

498 Distributed Control Systems / Programming Manual

22.3 STRING OPERATION

22.3.1 Connections

InA: First string value input

#StrOp0: String processing output InB: Second string value input

Trg: Trigger input

22.3.2 Connection Explanations

InA: First string value input

It is first string value input

InB: Second string value input

It is second text value input.

Trg: Trigger input

It is block trigger input.

#StrOp0: String operation output

Text processing is output connection

499 Distributed Control Systems / Programming Manual

22.3.3 Block Settings

Math: Strings process steps that are part of the
selection.

On When Trig is Active: If selected; When the rising
edge (logic (1)) trigger comes to the block “Ttk” block
input, the action is taken.

22.3.4 Block Explanation

As doing operation on the string reference ,result of operation composed the integer value is

written blocks output.

Performed operations and expectation are given below:

Find
If the InA string reference includes the InB string reference, it outputs which
index of the InB string reference the expression in InB starts from.

Compare Compares the indices of InA and InB string references and outputs the ASCII
equivalent of the different value.
Note: The InA string reference must contain the InB text reference.
Note: If the InB string reference includes the InA text reference, it subtracts
the ASCII equivalent of the different value from 65.356 and writes it to the
output.

StrLen Writes the number of characters of the text in the InA reference to the output.

StrToInteger The text in the InA reference converts the content to integers and writes it to
the output

500 Distributed Control Systems / Programming Manual

23 CALENDER BLOCKS

23.1 WEEKLY TIMER

23.1.1 Connections

Day: Day selection input

#WT0: Block Output O.T: Opening time input

C.T: Closing time input

23.1.2 Connection Explanations

Day: Day selection input

It is day selection input.

O.T: Opening time input

It is the input which determine opening time.

C.T: Closing time input

It is the input which determine closing time.

#WT0: Block output

It is block output which is producing logic(0) and logic(1) signal.

501 Distributed Control Systems / Programming Manual

23.1.3 Block Settings

Days: Determines the operating days for
weekly timer.

Hour period: It determines weekly timer’s
operating interval.

All Day: If it is chosen the hour period
becomes passive; block output is activated
during 24 hours for the selected days

23.1.4 Block Explanation

O1 output becomes logic(1) for the selected day and time intervals.

Provides simple and excellent programming ease in the control of the systems which are to be

operated at the determined days and time intervals of the week.

When week’s day is desired to choose from out of block, every day is represented by one bit.

The least significant bit(LSB) represents Monday, the most significant bit (MSB) represents

Sunday. Thus 1 for Monday, 2 for Tuesday, 4 for Wednesday, 8 for Thursday, 16 for Friday, 32

502 Distributed Control Systems / Programming Manual

for Saturday, 64 for Sunday values must be entered. When more than one day is wanted to be

chosen, corresponding values is written as a sum.

For example, when it is wanted to choose Monday, Wednesday and Friday, 1+4+16=21 value

must be entered.

To insert O.T. and C.T. values from out of the block, the value is entered with no punctuations in

between. For example, 16:30 should be written as 1630. For 01:17, 117 should be entered.

Since weekly timer works in minute resolution, the outputs are updated in a period of +30

seconds.

23.1.5 Sample Application

In the example, Bit Merge Block is connected into weekly timer inputs. For Bit Merge Block

, every input is represented by one day. Binary registers are connected to Bit

Merge block’s inputs. One word register is connected to the O.T. and C.T. inputs, and it is

aimed to control the on/off state of the pump by using the relay output (RQ0) connected to the

output of Weekly Timer.

Pump will operate in the selected days of the week such as Tuesday, Thursday, Friday between

08.30 and 17.00 hours and it will not operate in other days and times.

503 Distributed Control Systems / Programming Manual

23.2 YEARLY TIMER

23.2.1 Connections

O.D: Date of opening input

#YT0: Block output

C.D: Date of closing input

23.2.2 Connection Explanations

O.D: Date of opening input

It is the 32 bits long opening date input value. This value is of Unix Epoch seconds. The

seconds value since 00:00 1/1/1970 is inserted as the opening time.

It is the input for date of opening.

C.D: Date of closing input

It is the 32 bits long closing date input value. The seconds value since 00:00 1/1/1970 is

inserted as the closing time.

It is the input for date of closing.

#YT0: Block Output

The yearly timer block’s output which is logic(0) or logic(1)

504 Distributed Control Systems / Programming Manual

23.2.3 Block Settings

Open Date: The date value which
Yearly timer’s output will be logic
(1) can be determined in the block.

Close Date: The date value which
Yearly timer’s output will be logic
(0) can be determined in the block.

505 Distributed Control Systems / Programming Manual

23.2.4 Block Explanation

It is used to generate a logical (1) output between two selected time intervals of the year. It

outputs the logic(1) signal in between opening and closing dates which are entered and if else

logic(0).

If opening date(O.T) and closing date (C.T) is entered from out of block, Unix Epoch Time type

is entered as opening and closing time. In order to calculate Unix Epoch Time from date value,

the below link could used.

https://www.epochconverter.com/

23.3 ASTRONOMICAL TIMER

23.3.1 Connections

Ltd: Input for latitude value

#ATmr0: Block Output

Lng: Input for longitude value SunRise: Sunrise time

Offs: Input for offset SunSet: Sunset time

23.3.2 Connection Explanations

Ltd: Input for latitude value

It is the latitude coordinate information of the geographic location which is used to calculate the

sunrise and sunset time. For example, only 51 must be entered for 51°30'

Lng: Input for longitude value

It is the longitude coordinate information of the geographic location which is used to calculate

the sunrise and sunset time. For example, only 39 must be entered for 39°20'

Offs: Input for offset

It is used to select the time zone for summer/winter time. Time period offset is entered such as -

10, -9, … +1, +2, .. +9

https://www.epochconverter.com/

506 Distributed Control Systems / Programming Manual

#ATmr0: Block output

For the location in the entered coordinates, Block output is logic(1) for day time and logic(0) for

night time.

SunRise: Sunrise time

Sunrise time for location in the entered coordinates. For example if sunrise is 05:43, 543 value

is read in this block output.

SunSet: Sunset time

Sunset time for location in the entered coordinates. For example if sunset is 18:25, 1825 value

is read in this block output.

23.3.3 Block Settings

Latitude: The value of latitude is entered
within the block.

Longitude: The value of longitude is
entered within the block.

Offset: The time period, can be selected
within the block

507 Distributed Control Systems / Programming Manual

23.3.4 Block İnformation

Sunset and sunrise time is calculated by using the latitude and longitude values. This time

calculation is run once in everyday at midnight. According to sunrise/sunset time, the block

output is set. Output of block is updated once every minute.

In the Day output of block, during the daytime logic(1) signal output is generated, after sunset

the logic(0) output I generated during the night time for the entered coordinates.

Sunrise output is the sunrise time for specified coordinates. For example, if sunrise time is

05:43, 543 value is read in this block output.

Sunset output is the sunset time for specified coordinates.. For example, if the time of sunset is

18:25, 1825 value is read in this block output.

The Offset Value is the time period for GMT. The information of time period can be entered as a

+ or – value.

Ltd, Lng and Ofs inputs can be entered within the block.

23.3.5 Sample Application

Astronomical timer’s latitude, longitude and offset information is determined with registers. These

values may also be determined within the block. The digital output or relay output can be

connected to the ”Day” output.

508 Distributed Control Systems / Programming Manual

For example; latitude 41, longitude 29 and offset 2 values must be entered for İstanbul. When

clocks go forward for summer time the offset should be set to 3.

Sunset and sunrise times can be viewed from output of “Sunrise” and “Sunset” outputs.

23.4 SYSTEM SECONDS

23.4.1 Connections

#SSB0: Block output

23.4.2 Connection Explanations

#SSB0: Block output

Unix Epoch Time seconds value is written to this output

23.4.3 Block Settings

There is no block settings.

23.4.4 Block Explanation

The system second block shows the PLC’s real time clock’s second value. The information

which is from PLC real time is calculated as seconds since Linux Epoch (00:00 1/1/1970) and

is written to block output.

509 Distributed Control Systems / Programming Manual

23.4.5 Sample Application

In the example, real second value of the PLC is read.

23.5 SYSTEM MILISECONDS

23.5.1 Connections

Sta: Block output

23.5.2 Connection Explanations

Sta: Block output

It is block output which shows the system’s milliseconds as a 32 bit value.

23.5.3 Block Settings

There is no block settings

23.5.4 Block Explanation

"System Milliseconds" block reads the millisecond value from the moment the PLC starts to

operate. When the device is rebooted, this counter resets to zero and it starts to counter from 0.

510 Distributed Control Systems / Programming Manual

23.5.5 Sample Application

In the example, time since the PLC reset is seen as milliseconds value.(The system is reset

nearly before 15 seconds.)

23.6 SYSTEM HHMM (HOUR-MINUTE)

23.6.1 Connections

#SHHM1: Block minutes output

Hou: Block hour output

23.6.2 Connection Explanations

#SHHM1: Block minutes output

It is the minute value, 16 bits long Word

Hou: Block hour output

It is the hour value, 16 bits long Word

23.6.3 Block Settings

There is no block settings.

23.6.4 Block Explanation

System HHMM block shows the PLC’s real time clock’s hours and minutes value. The minutes

is displayed between the 0-59 and hours is displayed between 0-23

511 Distributed Control Systems / Programming Manual

23.6.5 Sample Application

The PLC’s hours and minutes information is read and that the current time is seen as 14:56.

23.7 SYSTEM DAY OF WEEK

23.7.1 Connections

#SDWB0: Block output

23.7.2 Connection Explanations

#SDWB0: Block output

It is 16 bits long word output that read the day of weeks value

512 Distributed Control Systems / Programming Manual

23.7.3 Block Settings

There is no block settings.

23.7.4 Block Explanation

System day of week shows PLC’s real time clock’s week of day. It is read such as Sunday 0,

Monday 1, Tuesday 2,Wednesday 3,Thursday 4, Friday 5,Saturday 6.

23.7.5 Sample Application

Shows the day of week. If read value is six, then the day is Saturday.

23.8 SYSTEM DAY OF MONTH

23.8.1 Connections

#SDMB0: Block output

23.8.2 Block Explanation

#SDMB0: Block output

It is 16 bits long word output that read the day of month value.

23.8.3 Block Settings

There is no block settings.

513 Distributed Control Systems / Programming Manual

23.8.4 Block Explanations

The system day of month block shows PLC’s real time clock’s day of month. It displays values

between 1-31.

23.8.5 Sample Application

Day of month value is showed on the block.

23.9 SYSTEM DAY OF YEAR

23.9.1 Connections

#SDYB0: Block output

23.9.2 Connection Explanations

#SDYB0: Block output

It is 16 bits word output that read the day of year value.

23.9.3 Block Settings

There is no block settings.

23.9.4 Block Explanation

The system day of year block shows PLC’s real time clock’s day of year value. It can take value

s between the 1-365.

514 Distributed Control Systems / Programming Manual

23.9.5 Sample Application

The value of the day of the year is read and it is 216 days since the beginning of the year.

23.10 SYSTEM MONTH

23.10.1 Connections

#SMoB0: Block output

23.10.2 Block Explanation

#SMoB0: Block output

It is the block output

23.10.3 Block Settings

There is no block settings

23.10.4 Block Explanation

System Month block shows PLC's real time clock’s month of year value.

515 Distributed Control Systems / Programming Manual

23.10.5 Sample Application

It is seen that it is the eighth month of the year (August).

23.11 SYSTEM YEAR

23.11.1 Connections

#SYeB0: Block output

23.11.2 Connection Explanations

#SYeB0: Block output

It is the connection of block output

23.11.3 Block Settings

There is no block settings

23.11.4 Block Explanation

System Year Block shows PLC's real time clock’s year value.

516 Distributed Control Systems / Programming Manual

23.11.5 Sample Application

It is read the year value of the system.

23.12 NTP SYNCRONISE BLOCK

23.12.1 Connection

Ser: NTP Server Input

Por: NTP Server Port Input

Trg: Trig Input

23.12.2 Connection Explanations

Ser: NTP Server Input

NTP Server IP can be defined from this entry in the block.

Por: NTP Server Port Input

NTP Server Port number can be defined from this entry in the block

Trg: Trig Input

It is the trigger input for synchronization. It works as a rising edge.

517 Distributed Control Systems / Programming Manual

23.12.3 Block Settings

NTP Server IP: NTP Server IP number can be
entered from the block entry or can be set from
the block special settings..

NTP Server Port: NTP Server Port number can be
entered from the block entry or can be set from
the block special settings.

Note: In order for the trigger to work, the "On When Trig is Active” option must be selected from

the block block settings.

23.12.4 Block Explanation

Since the NTP Synchronization Block is active with the high edge signal coming to the Trg-

Trigger pin, Real Time Pulse Generator, Symmetrical Pulse Generator or Binary Register block

can be connected to the block trigger input. Blocks connected to the trigger input are used to set

the match frequency with the NTP server.

For NTP server settings, NTP server IP is entered in the NTP Server IP section of the function

block. In the NTP port part, the server port is entered. On When Trig is Active option, on the

other hand, enables the block to run as a result of the trigger.

If desired, NTP Server IP and NTP Port information can also be defined by connecting to the

Ser and Por pins of the NTP Syncronise Blocks.

518 Distributed Control Systems / Programming Manual

23.12.5 Sample Application

The timing frequency of the real-time pulse generator is 1 per second. The RTPG block sends a

trigger once per second to the NTP synchronization block, performing a time synchronization

with the NTP server once per second

519 Distributed Control Systems / Programming Manual

23.13 SAVE TIME

23.13.1 Connections

Sav: Saving trigger input

#STiB0: Block output

Sec: Second input

Min: Minute input

Hou: Hour input

Day: Day input

Mon: Month input

Yea: Year input

23.13.2 Connection Explanations

Sav: Saving trigger input

It is the input to be triggered in rising edge for saving time.

Sec: Second input

It is the seconds input of Save Time.

Min: Minute input

It is the minutes input of Save Time.

Hou: Hour input

It is the hour input of Save Time.

Day: Day input

It is the day input of Save Time.

Month: Month input

520 Distributed Control Systems / Programming Manual

It is the month input of Save Time.

Year: Year input

It is the year input of Save Time.

#STiB0: Block output

It is the block output connection.

23.13.3 Block Settings

There is no block settings.

23.13.4 Block Explanation

It is used to set the PLC’s time and date within the logic project. It saves the values written into

the block inputs to the real time clock of the PLC at the rising edge instance of the “Save Input”.

23.13.5 Sample Application

521 Distributed Control Systems / Programming Manual

In the example; the time and date values written to the inputs of the save time block are written

to the real time clock at the rising edge trigger of the "Sav" input.

23.14 TIME PLAN PICKER

23.14.1 Connections

#TPP0: Default output

Rem: Remaining output

23.14.2 Connection Explanations

#TPP0: Default output

It is the default output.

Rem: Remaining output

It is the remaining output.

522 Distributed Control Systems / Programming Manual

23.14.3 Block Settings

Schedule Select Table:
Indexes for tags are defined.

23.14.4 Blok Explanation

It can be used in conjunction with Mikrodev ViewPLUS SCADA. It CAN NOT BE USED alone.

If the index is selected in the Mikrodiagram "Time Plan Picker", the same index of the "Schedule

Tag" must be selected in ViewPLUS SCADA. In order to make settings for "Time Plan Picker",

at "View PLUS SCADA" ; "Scheduler" must be added to "Scada Editor" and "Schedule tag"

must be selected.

If more than one index is selected in the time plan picker and the tags defined in these indexes

are added to ViewPLUS SCADA, output logic (1) occurs between the indexes if the index

condition is met with OR operation.

523 Distributed Control Systems / Programming Manual

The "Def" output of the "Time Plan Picker" is in logic(1) if the day and time is in selection range

of the PLC clock selected from "ViewPLUS SCADA", while in other cases the "Def" output is

logic(0).

"Rem" output block is logic low(0), if it satisfies the time zone condition selected from the

ViewPLUS SCADA; if it does not, it shows how long remained for the condition to be satisfied.

Note: A maximum of 63 different indices can be defined in the PLC, if an index is defined on

more than one "Time Plan Picker", the block outputs give the same output.

23.14.5 Sample Application

524 Distributed Control Systems / Programming Manual

In the examples; PLC program is in first picture and ViewPLUS SCADA interface is in the second

picture.

In the case of “time plan picker 1”, the output of "Def" output and relay (RQ0) is logic (1) because

the PLC time is on one of the selected days and the time is between 14:22 and 14:25. The “Rem”

output is logic low(0) because of the output “Def” is logic (1).

In the case of “time plan picker 2”, the PLC time date is on one of the selected days but since the

time is not between 14:30 and 14:35, the "Def" output signals logic (0) and the relay (RQ0) is

inactive. The "Rem" output shows how many minutes are left until 14:30. In this case, it can be

estimated that PLC time is 14:30 since at the output of "Rem" is the value of 0.

525 Distributed Control Systems / Programming Manual

24 MACRO BLOCKS

24.1 MACRO

24.1.1 Connection

in0: First data input

#MCR0: First data output

in1: Second data input

in2: Third data input

o1: Second data output in3: Fourth data input

Trg: Trigger input

24.1.2 Connection Explanations

in0: First data input

It is the first data input.

in1: Second data input

It is the second data input.

in2: Third data input

It is the third data input.

in3: Fourth data input

It is the fourth data input.

Trg: Trigger input

It is trigger connection input.

#MCR0: First data output

526 Distributed Control Systems / Programming Manual

It is the first data output.

o1: Second data output

It is the second data output.

24.1.3 Block Settings

Macro: It is the field where custom
command definitions are made.

24.1.4 Block Explanations

Custom blocks can be designed by inserting special command definitions in the macro field

of the block.

There are 50 analog variables you could use in the macro block. You can use variable

definitions in the macro using the addresses "v0", "v1", "v2" ... and "v49". The variables are

off floating point-analog type .

The addresses "i0", "i1", "i2" and "i3" can be used to read data from the inputs of the macro

block.

527 Distributed Control Systems / Programming Manual

The addresses "#MCR0" and "o1" can be used to transfer data to the outputs of the macro

block.

If you want to read any block value in Mikrodiagram application within the macro, you can use

it by specifying "$" expression and block number.

For example; It is enough to write "$1056" to address the value of block with “block number

1056” in the macro. Mikrodiagram macro addressing solution allows all blocks in the diagram

area to be written and read.

"[" Character is created with the command line start. "]" Creates a command line break.

Basic command line usage is :

["addressing" = "addressing", "command", "addressing"].

The expression "[E]" specifies the macro end. Use of conditional expression (IF);

[IF, <State 0/1>, <jump line>]

For example; If the “State” value is “0”, it is passed to the next command line by the step count

specified in the jump line. If the state value is 1, execution is continued from the next command

which is just below the “IF” expression line. Positive values for the bottom rows and negative

values for the top rows are used to jump between lines in the “IF” command line. “2” is written

to go to lower two lines of the IF command and “-2” to go to the upper two lines of the IF

command.

Example code;

[v1 = v0> $1504]

[IF, v1,2]

[v2 = $1504 + 0]

In the above example;

[v1 = v0> $1504]

> If the value of "v0" is greater than the value of block $1504, logic (1) will be assigned to v1.

[IF, v1,2]

528 Distributed Control Systems / Programming Manual

 > If “v1” value is logic (0), skip two lines; If “v1” is logic (1) continue to the next command line.

[v2 = $1504 + 0]

> If the result of the "IF" command in the previous line is logic (1), ie v0 is greater than $1504,

assign value $1504 to v2. "+0" is added in order to comply with macro line format in

assignment process.

[E] -> Macro end

> That line indicates that macro is completed.

529 Distributed Control Systems / Programming Manual

24.1.4.1 Commands

Command Command Definition

+ Plus

- Minus

* Multiply

/ Divided by

% Modular arithmetic

& Logical “AND” operation

| Logical “OR” operation

^ Logical “X-OR” operation

> Greater than

< Less than

e Equal to

b Greater than or equal to

k Less than or equal to

n Not equal to

IF Logical “IF”

[Command line start

] Command line end

E Macro end

$ Block Addressing

v0,v1, .. Variable

530 Distributed Control Systems / Programming Manual

24.1.5 Sample Application

Control of 8 binary register values by the logical "and" operation written in the macro:

The macro block will only operate when the trig is active.

Macro commands:

[v0 = $3000 & $3001] -> Evaluate the registers addressed with $3000 and $3001 in the

logical "and" operation and assign the result to variable 0(v0).

[v0 = v0 & $3002] -> Evaluate the registers addressed with v0 and $3002 in the

logical "and" operation and assign the result to variable 0(v0).

[v0 = v0 & $3003]

[v0 = v0 & $3004]

[v0 = v0 & $3005]

[v0 = v0 & $3006]

[v0 = v0 & $3007]

[o0 = v0 + 0] –> The value of variable 0(v0) is passed to the output of macro block

o0.

[E] –> Macro process ends.

The result of operation for $3007 register value is 0 and other register value is 1;

The definition of the AND operation is that if any of the inputs are logic (0), the output is logic

(0), so the macro block output is logic (0).

531 Distributed Control Systems / Programming Manual

Process result with all register values are logic(1):

The definition of the AND operation is that if all of the inputs are logic (1), the output is logic (1),

so the macro block output is logic (1).

532 Distributed Control Systems / Programming Manual

25 DALI BLOCKS

25.1 DALI Block

25.1.1 Connection

Dal: Expansion Switch ID
input

#DALI0: Light level output of the
armature Add: Armature address input

Dat: Data Byte 1 input

Rx: Number of messages from
the armature Dat: Data Byte 2 input

Tri: Trigger input Res: Number of messages sent
to the armature

25.1.2 Connection Explanation

It is used to send data packets to the DALI line that cannot be sent from the DALI manager

block.

Inputs:

1. Dali Bus: It is the input for the Expansion Switch ID.

2. Address Byte: It is the input for the armature address.

3. Data Byte 1: It represents the 1st byte of the data packet to be sent to the DALI line.

(The value is sent in decimal format.)

4. Data Byte 2: It represents the 2nd byte of the data packet to be sent to the DALI line.

(The value is sent in decimal format.)

5. Trig: This is the trigger input of the block. When a trigger is applied here, the data packet

intended to be sent through the block is transmitted to the DALI line.

Outputs:

1. DALI0: It provides the light level of the armature.

2. Rx: It is number of messages from the armature

3. Tx: It is the number of messages sent to the armature.

533 Distributed Control Systems / Programming Manual

25.1.3 Block Settings

Dalibus No: It is the input for the Expansion
Switch ID. This value can be entered either
through the block options or the block input.

Adress Byte: It is the input for the armature
address. This value can be entered either
through the block options or the block input.

Data Byte1: It represents the first byte of the
data packet to be sent to the DALI line. This value
can be entered either through the block options
or the block input.

Data Byte2: It represents the second byte of the
data packet to be sent to the DALI line. This value
can be entered either through the block options
or the block input.

Number of Data Bytes: It is used to specify how
many bytes the data packet to be sent to the
DALI line consists of.

Sync with DevNet: When this checkbox is
selected, it sets the data outputs to 0 if no
response is received from the armature.

25.1.4 Block Explanation

The DALI block allows you to send data packets directly to armatures. Data packets that cannot

be sent from the DALI Manager block can be parsed into bytes and transmitted to the DALI line

through this block, enabling remote control of armatures. You need to enter the decimal

equivalents of the data packet you want to send into the data byte sections.

Before starting operations with the Mikrodev DALI Expansion Module, configuration must be

performed using a USB-DALI Converter. The configuration should include addressing, grouping,

power-on, minimum and maximum level selections, and scene selections. The PLC program is

written based on these addresses.

534 Distributed Control Systems / Programming Manual

Note: Data packets sent from DALI switching elements with DALI-2 support can be read via

RTU. For this purpose, the DALI block is used.

Example: Suppose a DALI switching element is connected at address 0 on DALI bus number 0.

To read the data packet from this element, the special settings of the DALI block should be

configured as follows:

Dalibus No: 0 (The switch ID of the DALI expansion module to which the relevant switching

element is connected should be entered.)

Address Byte: 0 (The address number to which the switching element is connected should be

entered.)

Data Byte1: 255 (To read the data packet sent from the switching element, the value 255 should

be entered here.)

Data Byte2: 255 (To read the data packet sent from the switching element, enter the value 255

here.)

535 Distributed Control Systems / Programming Manual

25.1.5 Sample Application

In the example application, a DALI switching element is connected to DALI bus number 0 at

address 0. When the switch is in the open position, a value of 0 is read from the Rx output of the

DALI block, and when it is in the closed position, a value of 255 is read. Based on these values

read from the switching element, the DALI armatures in the field are controlled.

536 Distributed Control Systems / Programming Manual

25.2 Dali Manager Block

25.2.1 Connection

Bus: Expansion Switch ID input

#DALM0: Light level output of the
armature Add: Armature address input

Add: Armature/Group
selection

Sta: Status information output of
the armature

Max: Trigger input for
maximum brightness

Min: Trigger input for
minimum level illuminance

Fai: Armature alarm information
output

Off: Armature/Close group
input

DimValue: Armature
brightness value input

Dev: Output for monitoring
whether the armature is active

DimTrig: Brightness value app
trigger input

Sce: Scene number input Tx: Number of messages sent to
the armature

Sce: Apply scene number
trigger input

Rx: Number of messages from
the armature

Rea: From the armature;
Trigger input to read dim level,
status and alarm bytes

Rx_C: Read operation status
information

537 Distributed Control Systems / Programming Manual

25.2.2 Connection Explanation

Inputs:

1. Bus Id: Expansion Switch ID entry.

2. Address: It is the armature address input.

3. Address Type: If this input is 0, it is treated as a armature, and if it is 1, as a group

address.

4. Max Level: When a trigger is applied to this input, the armature /group gives maximum

level illumination.

5. Min Level: When a trigger is applied to this input, the armature /group gives a minimum

level of illumination.

6. Off: When this input is triggered, armature/group closes.

7. Dim Value: Brightness value between 85-254 is input to the armature.

8. Dim Trig: When this input is triggered, it applies the value applied to the "Dim Value"

input to the armature.

9. Scene No: Scene number entry. A value between 0-15 is entered.

10. Scene Trig: When this input is triggered, it sends the value applied to the “Scene No” input

to the DALI line and the scene application is started.

11. Read Trig: From the armature; Trigger is given to read dim level, status and alarm bytes.

(ADDRESS TYPE MUST BE 0!)

Outputs: Updates when read trig is applied.

1. Actual Level: Returns the luminous level of the armature.

2. Status Byte: It contains the status information of the armature. By doing bit parsing, we

can obtain the following information;

• Bit 0: General alarm. 0 = No Error, 1 = Error

• Bit 1: Lamp Fault. 0 = No Error, 1 = Error

• Bit 2: Lamp Status. 0 = Off, 1 = On

• Bit 3: Limit Error. 0 = No Error, 1 = If value other than Min/Max level is entered, it

will be 1.

• Bit 4: Fade Operation. 0 = No Fade operation 1 = Fade operation on.*

• Bit 5: Reset status. 0 = Not in reset state, 1 = All variables (dim, fade, ..etc) are in

initial state.

• Bit 6: Address Error. 0 = Addressing done, 1 = Addressing not done.

538 Distributed Control Systems / Programming Manual

• Bit 7: Energy Cycle. 0 = Normal operation, 1 = 1 when first energized, decreases

to 0 at next dim level changes etc.

*fade: It makes the armature flash slowly like an analog ramp, for example, it is the process

of going from dim level 0 to 100 in 10 seconds. This 10 sec should be specified in the

configuration, we do not do any extra operations on the plc.

3. Fail Status Byte: It contains the alarm information of the armature. By doing bit parsing,

we can obtain the following information;

• 0. Bit: Led short circuit

• 1. Bit: Led open circuit

• 2. Bit: Load reduction

• 3. Bit: Load increase

• 4. Bit: Overcurrent protection

• 5. Bit: Thermal shutdown

• 6. Bit: Thermal overload

• 7. Bit: Reference Error

4. Device Status: It will be 0 when the read trigger comes, if there is a response from the

armature, it will be 1, this timeout value can be adjusted with the off delay block and it

can be monitored whether the armature is active or not.

5. Tx: Number of messages sent to the armature

6. Rx: Number of messages from the armature

7. Rx Complete: It becomes 0 during the read operation and 1 when the read operation is

finished.

539 Distributed Control Systems / Programming Manual

25.2.3 Block Settings

Dalibus No: Expansion Switch ID entry. This value
can be entered from the block options or from
the block input.

Address: It is the armature address input. This
value can be entered from block options or block
input

Address Type: If it is 0, it is treated as a
armature, if it is 1, as a group address. This value
can be entered from the block options or from
the block input.

Dim Value: Brightness value between 85-254 is
input to the armature. This value can be entered
from the block options or from the block input.

Scene No: Scene number entry. A value between
0-15 is entered. This value can be entered from
the block options or from the block input.

Sync with DevNet: When this box is checked; If
there is no answer from the armature, it makes
the data outputs 0.

25.2.4 Block Explanation

DALI Manager block provides remote access to armatures or groups. Thanks to the DALI

Manager block, we can adjust the armature brightness, read the light level of the armetures in

the field, armature status information and armature error information from the block outputs.

Before starting the process with the Mikrodev DALI Expansion Module, a USB-DALI Converter

must be configured. Configuration; addressing, grouping, power-on, min, max level selections

and scene selections. PLC program is written according to these addresses.

You can refer to the DALI Configurator document for configuration details.

540 Distributed Control Systems / Programming Manual

25.2.5 Sample Application

In the example application, a dim value of 90 was sent to the armature at address 0, connected

to the Switch ID 0 input of the DALI expansion module, using the DALI manager block.

When the Read trig input was triggered, the DALI manager block's output read the dim value of

90.

541 Distributed Control Systems / Programming Manual

25.3 Dali Manager Block 2

25.3.1 Connection

Bus: Expansion Switch ID input

#DALM20: Light level output of
the armature

Add: Armature address input

Add: Armature /Group
selection

Max: Trigger input for
maximum brightness

Min: Trigger input for
minimum level illuminance

Sta: Status information output of
the armature

Off: Armature /Close group
input

DimValue: Armature
brightness value input

Fai: Armature alarm information
output

DimTrig: Brightness value app
trigger input

Sce: Scene number input

Sce: Apply scene number
trigger input

Dev: Output for monitoring
whether the armature is active

Rea: From the armature;
Trigger input to read dim level,
status and alarm bytes

542 Distributed Control Systems / Programming Manual

25.3.2 Connection Explanation

Inputs:

1. Bus Id: Expansion Switch ID entry.

2. Address: It is the armature address input.

3. Address Type: If this input is 0, it is treated as a armature, and if it is 1, as a group

address.

4. Max Level: When a trigger is applied to this input, the armature /group gives maximum

level illumination.

5. Min Level: When a trigger is applied to this input, the armature /group gives a minimum

level of illumination.

6. Off: When this input is triggered, armature/group closes.

7. Dim Value: Brightness value between 85-254 is input to the armature.

8. Dim Trig: When this input is triggered, it applies the value applied to the "Dim Value"

input to the armature.

9. Scene No: Scene number entry. A value between 0-15 is entered.

10. Scene Trig: When this input is triggered, it sends the value applied to the “Scene No” input

to the DALI line and the scene application is started.

11. Read Trig: From the armature; Trigger is given to read dim level, status and alarm bytes.

(ADDRESS TYPE MUST BE 0!)

Outputs: Updates when read trig is applied.

1. Actual Level: Returns the luminous level of the armature.

2. Status Byte: It contains the status information of the armature. By doing bit parsing, we

can obtain the following information;

• Bit 0: General alarm. 0 = No Error, 1 = Error

• Bit 1: Lamp Fault. 0 = No Error, 1 = Error

• Bit 2: Lamp Status. 0 = Off, 1 = On

• Bit 3: Limit Error. 0 = No Error, 1 = If value other than Min/Max level is entered, it

will be 1.

• Bit 4: Fade Operation. 0 = No Fade operation 1 = Fade operation on.*

• Bit 5: Reset status. 0 = Not in reset state, 1 = All variables (dim, fade, ..etc) are in

initial state.

• Bit 6: Address Error. 0 = Addressing done, 1 = Addressing not done.

543 Distributed Control Systems / Programming Manual

• Bit 7: Energy Cycle. 0 = Normal operation, 1 = 1 when first energized, decreases

to 0 at next dim level changes etc.

*fade: It makes the luminaire flash slowly like an analog ramp, for example, it is the process

of going from dim level 0 to 100 in 10 seconds. This 10 sec should be specified in the

configuration, we do not do any extra operations on the plc.

3. Fail Status Byte: It contains the alarm information of the armature. By doing bit parsing,

we can obtain the following information;

• 0. Bit: Led short circuit

• 1. Bit: Led open circuit

• 2. Bit: Load reduction

• 3. Bit: Load increase

• 4. Bit: Overcurrent protection

• 5. Bit: Thermal shutdown

• 6. Bit: Thermal overload

• 7. Bit: Reference Error

4. Device Status: It will be 0 when the read trigger comes, if there is a response from the

armature, it will be 1, this timeout value can be adjusted with the off delay block and it

can be monitored whether the armature is active or not.

544 Distributed Control Systems / Programming Manual

25.3.3 Block Settings

Dalibus No: Expansion Switch ID entry. This value
can be entered from the block options or from
the block input.

Address: It is the armature address input. This
value can be entered from block options or block
input

Address Type: If it is 0, it is treated as a
armature, if it is 1, as a group address. This value
can be entered from the block options or from
the block input.

Dim Value: Brightness value between 85-254 is
input to the armature. This value can be entered
from the block options or from the block input.

Scene No: Scene number entry. A value between
0-15 is entered. This value can be entered from
the block options or from the block input.

Sync with DevNet: When this box is checked; If
there is no answer from the armature, it makes
the data outputs 0.

545 Distributed Control Systems / Programming Manual

25.3.4 Block Explanation

DALI Manager block provides remote access to armatures or groups. Thanks to the DALI

Manager block, we can adjust the armature brightness, read the light level of the armatures in

the field, armature status information and luminaire error information from the block outputs.

Before starting the process with the Mikrodev DALI Expansion Module, a USB-DALI Converter

must be configured. Configuration; addressing, grouping, power-on, min, max level selections

and scene selections. PLC program is written according to these addresses.

You can refer to the DALI Configurator document for configuration details.

