How To Buy
EN
TR

Optimizing Control Systems with PLC, RTU, and SCADA

In the ever-evolving world of industrial automation, Programmable Logic Controllers (PLCs) play a crucial role in controlling and monitoring various processes. One of the lesser-known but highly valuable features of PLC programming is the “aging functions.” In this article, we will explore the concept of aging functions, their practical applications, and how they can enhance the performance of your PLC-based automation systems.

I.What Are Aging Functions in PLC Programming?

Aging functions are a set of tools within PLC programming that assist in monitoring the duration and frequency of specific conditions. These functions are particularly useful in managing and controlling processes with time-varying parameters, a common occurrence in many industrial settings. Aging functions essentially track how long a specific condition has been met or unmet and can be programmed to trigger specific actions based on this duration. This provides a valuable mechanism for controlling critical operations.

II. Practical Applications of Aging Functions in PLC Programming

Enhancing Reliability and Safety

  • Timing Maintenance with Aging Functions

Aging functions are extremely useful for scheduling maintenance tasks. By monitoring the operating time of various components or machines, maintenance alerts can be triggered when specific thresholds are exceeded. This predictive maintenance approach allows for performing maintenance before equipment failure, reducing downtime and costly repairs. In cases where parallel equipment is in use, the system can automatically decide which one should operate, ensuring close-to-optimal uptime.

  • Environmental Control

In applications where precise temperature and humidity control is critical, aging functions can be used to monitor and regulate environmental conditions. For example, in a storage facility with climate control, aging functions can help maintain temperature and humidity settings based on historical data and real-time conditions.

  • Batch Processes

Industries such as pharmaceuticals and food processing often rely on batch processes. Aging functions ensure that each step of the production process is completed within specified time frames. If a stage takes too long or is completed too quickly, the PLC can make the necessary adjustments to maintain product quality and efficiency.

III. Implementing Aging Functions in PLC Programming

Implementing aging functions in PLC programming requires a thorough understanding of your specific automation process and a systematic approach. Here’s a general guideline to help you get started:

  • Define the Condition

First, clearly define the condition or event you want to monitor. For instance, if you are monitoring the operating time of a pump, the condition could be “pump running.”

  • Set Aging Parameters

Specify the time interval and thresholds that make sense for your application. This may involve setting limits for acceptable minimum and maximum operating times.

  • Programming Logic

Use aging functions in your PLC program to track the condition and calculate the duration it has been met or unmet.

  • Trigger Actions

Based on the aging parameters, program the PLC to trigger specific actions or alarms when certain thresholds are exceeded. These actions could include maintenance alerts, process adjustments, or shutdown procedures.

Let’s create a sample project using aging functions found in the Microdiagram program to illustrate these guidelines.

Aging Manager Blog:

Effect: This is the block activation input.

Count: Indicates how many slave devices will work together simultaneously.

AgingDirection: Up to 10 “Aging Member” blocks can be connected to the output of the Aging Manager block. For example, if 6 “Aging Member” blocks are connected to this output, and the “Count” input is set to 2, these 6 members will work in pairs at 1-minute intervals.

Aging Member Block:

Aging Functions in PLC Programming

The “Aging Member” block works in conjunction with the “Aging Manager” block. It allows us to put equipment that needs to be run at defined intervals into a periodic cycle. Once the necessary configurations have been made in the input of the “Aging Member” block, the output information for the equipment to be used is determined, such as digital output or output relay.

Sample Application:

Three member blocks are connected to the manager. By setting the “Effect” input of the manager block to 1 and the operating time to 1 minute, the three pieces of equipment will continue to operate in pairs at 1-minute intervals.

IV. Advantages of Using Aging Functions

  • Increasing Efficiency and Predictability

Using aging functions in PLC and SCADA systems helps balance the workload of equipment in the system, leading to operational efficiency. Additionally, continuously monitoring aging criteria allows for predictive maintenance and fault prediction.

  • Enhanced Control

Aging functions respond to specific time-based conditions, providing a more sophisticated level of control. This leads to more efficient and precise automation.

  • Reducing Downtime

Process settings based on predictive maintenance and aging functions can significantly reduce unplanned downtime and maintenance costs.

  • Improved Product Quality

In processes where product quality is critical, aging functions ensure that essential steps are completed within the desired time frame, contributing to consistent quality.

 

V.Real-World Examples

To demonstrate real-world applications of aging functions, consider the following examples:

  • Water Treatment Plants

Aging functions monitor water treatment processes and adjust chemical dosages based on the transition times between various treatment stages.

  • Water Booster Stations

Aging functions improve energy efficiency and operational efficiency in water booster stations by activating and deactivating pumps based on their performance and operating times.

  • Process Automation

In any process automation application with redundant systems, aging functions determine the sequence of operation for backup systems, providing data for energy savings, maintenance, and fault prediction.

 

VI. Conclusion

Embracing the Future of Automation

Aging functions in PLC programming offer an innovative and intelligent way to enhance your industrial automation processes. By monitoring the duration of specific conditions, aging functions enable predictive maintenance, process optimization, and better control. In an ever-evolving industrial landscape, incorporating aging functions into your PLC programming tools is a step toward more efficient and reliable operations.

Staying ahead in a dynamic industrial landscape means harnessing the power of advanced PLC features such as aging functions. Embrace this technology, and you will see your automation systems perform at their best, reducing downtime and increasing efficiency.

Other Post
All Posts
Turkish Armed Forces Base Areas Water Distribution System
Turkish Armed Forces Base Areas Water Distribution System
MP211 Series PLC and ViewPLUS SCADA software were used to control the water distribution system of military base areas in Hakkari, Türkiye. Tank water level and pump status information, failure tracki
Read More
Republic of Türkiye Malatya İnönü University Infrastructure Control and Automation System
Republic of Türkiye Malatya İnönü University Infrastructure Control and Automation System
Mikrodev RTU300 series remote terminal unit and ViewPLUS SCADA software were preferred in Malatya İnönü University SCADA Automation System. Many different systems such as Water, Energy, Building HVAC
Read More
Republic of Türkiye Ministry of Environment, Urbanization and Climate Change Continuous Wastewater Tracking System
Republic of Türkiye Ministry of Environment, Urbanization and Climate Change Continuous Wastewater Tracking System
Mikrodev products were preferred at more than 100 stations in the Continuous Wastewater Monitoring System managed by the Republic of Türkiye Ministry of Environment, Urbanization and Climate Change.
Read More
Data Security in Industrial SCADA Systems: Best Practices for SCADA Security, Industrial Cybersecurity, and Penetration Testing
Data Security in Industrial SCADA Systems: Best Practices for SCADA Security, Industrial Cybersecurity, and Penetration Testing
SCADA systems—at the heart of industrial automation—ensure the management of production lines and the continuity of processes. While these systems supervise critical sectors such as energy, water, gas
Read More
Gaziantep City Water and Sewerage Administration (GASKI) Drinking Water Disinfection SCADA System
Gaziantep City Water and Sewerage Administration (GASKI) Drinking Water Disinfection SCADA System
In the GASKI Drinking Water Disinfection SCADA System, the chlorination of the water supply distribution networks and the water levels in the tank are monitored throughout in Gaziantep, Türkiye. In th
Read More
What is Data Management in PLC and the Advantages of Using Data Management ?
What is Data Management in PLC and the Advantages of Using Data Management ?
In the realm of industrial automation, Programmable Logic Controllers (PLCs) stand out as crucial automatic control devices, frequently employed in industrial sectors. As we emphasized in our blog pos
Read More
Security of SCADA Systems
Security of SCADA Systems
Security of SCADA Systems In today's interconnected world, where technology permeates nearly every aspect of our lives, the security of supervisory control and data acquisition (SCADA) systems has be
Read More
Bursa Inegol OIZ 34.5 KV Medium Voltage Power Distribution Network SCADA System
Bursa Inegol OIZ 34.5 KV Medium Voltage Power Distribution Network SCADA System
Mikrodev products were used in energy monitoring and controls throughout the Inegol Organized Industrial Zone in Bursa, Türkiye. Cutter position information, controls and fault tracking are done throu
Read More
What is PLC Programming? MOBDUS RTU Protocols in Mikrodev PLC Programming
What is PLC Programming? MOBDUS RTU Protocols in Mikrodev PLC Programming
PLCs (Programmable Logic Controllers), one of the indispensable elements of industrial automation, are one of the main tools used today to regulate and control complex production processes. PLC progra
Read More
Ex4S Cyber Defense Simulation in the Energy Sector
Ex4S Cyber Defense Simulation in the Energy Sector
As Mikrodev, we provided Offensive Oriented Simulation infrastructure installations at the Ex4S Cyber Defense Simulation in the Energy Sector event, which was held for the first time this year at Repu
Read More
CATALOG